pytorch读书报告
代码:(可复制进pychar直接运行)
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np
# ===================== 1. 设备设置与数据预处理 =====================
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# 数据增强与预处理:训练集用增强(翻转、裁剪),测试集仅归一化
train_transform = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(32, padding=4),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])
test_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])
# 加载数据集
trainset = torchvision.datasets.CIFAR10(
root='./data', train=True, download=True, transform=train_transform
)
trainloader = torch.utils.data.DataLoader(
trainset, batch_size=128, shuffle=True, num_workers=2
)
testset = torchvision.datasets.CIFAR10(
root='./data', train=False, download=True, transform=test_transform
)
testloader = torch.utils.data.DataLoader(
testset, batch_size=128, shuffle=False, num_workers=2
)
classes = ('飞机', '汽车', '鸟', '猫', '鹿',
'狗', '青蛙', '马', '船', '卡车')
# ===================== 2. 定义CNN模型(LeNet改进版) =====================
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 64, 3, padding=1)
self.bn1 = nn.BatchNorm2d(64)
self.conv2 = nn.Conv2d(64, 64, 3, padding=1)
self.bn2 = nn.BatchNorm2d(64)
self.pool1 = nn.MaxPool2d(2, 2)
self.conv3 = nn.Conv2d(64, 128, 3, padding=1)
self.bn3 = nn.BatchNorm2d(128)
self.conv4 = nn.Conv2d(128, 128, 3, padding=1)
self.bn4 = nn.BatchNorm2d(128)
self.pool2 = nn.MaxPool2d(2, 2)
self.conv5 = nn.Conv2d(128, 256, 3, padding=1)
self.bn5 = nn.BatchNorm2d(256)
self.conv6 = nn.Conv2d(256, 256, 3, padding=1)
self.bn6 = nn.BatchNorm2d(256)
self.pool3 = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(256 * 4 * 4, 512)
self.dropout1 = nn.Dropout(0.5)
self.fc2 = nn.Linear(512, 10)
def forward(self, x):
x = self.pool1(torch.relu(self.bn2(self.conv2(torch.relu(self.bn1(self.conv1(x)))))))
x = self.pool2(torch.relu(self.bn4(self.conv4(torch.relu(self.bn3(self.conv3(x)))))))
x = self.pool3(torch.relu(self.bn6(self.conv6(torch.relu(self.bn5(self.conv5(x)))))))
x = x.view(-1, 256 * 4 * 4)
x = torch.relu(self.fc1(x))
x = self.dropout1(x)
x = self.fc2(x)
return x
net = Net().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', patience=3, factor=0.5)
# ===================== 3. 训练模型 =====================
epochs = 50
train_losses = []
train_accs = []
test_accs = []
for epoch in range(epochs):
running_loss = 0.0
correct = 0
total = 0
# 训练阶段
net.train()
for inputs, labels in trainloader:
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
_, predicted = outputs.max(1)
total += labels.size(0)
correct += predicted.eq(labels).sum().item()
train_loss = running_loss / len(trainloader)
train_acc = 100. * correct / total
train_losses.append(train_loss)
train_accs.append(train_acc)
# 测试阶段
net.eval()
correct = 0
total = 0
with torch.no_grad():
for inputs, labels in testloader:
inputs, labels = inputs.to(device), labels.to(device)
outputs = net(inputs)
_, predicted = outputs.max(1)
total += labels.size(0)
correct += predicted.eq(labels).sum().item()
test_acc = 100. * correct / total
test_accs.append(test_acc)
# 学习率调整
scheduler.step(train_loss)
print(f'Epoch {epoch+1:02d} | 训练损失: {train_loss:.3f} | 训练准确率: {train_acc:.2f}% | 测试准确率: {test_acc:.2f}%')
print('训练完成!')
# ===================== 4. 模型评估与可视化 =====================
# 绘制准确率曲线
plt.figure(figsize=(10, 5))
plt.plot(train_accs, label='训练准确率')
plt.plot(test_accs, label='测试准确率')
plt.xlabel('Epoch')
plt.ylabel('准确率 (%)')
plt.legend()
plt.title('训练与测试准确率曲线')
plt.savefig('accuracy_curve.png')
plt.show()
# 绘制损失曲线
plt.figure(figsize=(10, 5))
plt.plot(train_losses, label='训练损失')
plt.xlabel('Epoch')
plt.ylabel('损失')
plt.legend()
plt.title('训练损失曲线')
plt.savefig('loss_curve.png')
plt.show()
# 各类别准确率评估
class_correct = [0.] * 10
class_total = [0.] * 10
net.eval()
with torch.no_grad():
for inputs, labels in testloader:
inputs, labels = inputs.to(device), labels.to(device)
outputs = net(inputs)
_, predicted = outputs.max(1)
c = (predicted == labels).squeeze()
for i in range(len(labels)):
label = labels[i]
class_correct[label] += c[i].item()
class_total[label] += 1
for i in range(10):
print(f'类别 {classes[i]} 的准确率: {100 * class_correct[i] / class_total[i]:.2f}%')
# 保存模型
torch.save(net.state_dict(), 'cifar10_cnn.pth')
print('模型已保存为 cifar10_cnn.pth')
////运行结果:

浙公网安备 33010602011771号