66页作业

点击查看代码
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np

# 设置设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# 数据预处理
transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
)

# 加载训练集和测试集
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                        download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64,
                                          shuffle=True, num_workers=2)

testset = torchvision.datasets.CIFAR10(root='./data', train=False,
                                       download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=64,
                                         shuffle=False, num_workers=2)

# 定义类别
classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

# 定义网络模型
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 32, 3, padding=1)
        self.conv2 = nn.Conv2d(32, 64, 3, padding=1)
        self.conv3 = nn.Conv2d(64, 64, 3, padding=1)
        self.pool = nn.MaxPool2d(2, 2)
        self.fc1 = nn.Linear(64 * 4 * 4, 64)
        self.fc2 = nn.Linear(64, 10)
        self.relu = nn.ReLU()

    def forward(self, x):
        x = self.pool(self.relu(self.conv1(x)))
        x = self.pool(self.relu(self.conv2(x)))
        x = self.relu(self.conv3(x))
        x = x.view(-1, 64 * 4 * 4)
        x = self.relu(self.fc1(x))
        x = self.fc2(x)
        return x

net = Net().to(device)

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)

# 训练网络
train_losses = []
train_accs = []
test_accs = []

epochs = 10
for epoch in range(epochs):
    running_loss = 0.0
    correct = 0
    total = 0
    for i, data in enumerate(trainloader, 0):
        inputs, labels = data[0].to(device), data[1].to(device)

        optimizer.zero_grad()

        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        _, predicted = outputs.max(1)
        total += labels.size(0)
        correct += predicted.eq(labels).sum().item()

    # 计算训练集准确率
    train_acc = 100. * correct / total
    train_loss = running_loss / len(trainloader)
    train_losses.append(train_loss)
    train_accs.append(train_acc)

    # 在测试集上评估
    correct = 0
    total = 0
    with torch.no_grad():
        for data in testloader:
            images, labels = data[0].to(device), data[1].to(device)
            outputs = net(images)
            _, predicted = outputs.max(1)
            total += labels.size(0)
            correct += predicted.eq(labels).sum().item()
    test_acc = 100. * correct / total
    test_accs.append(test_acc)

    print(f'Epoch {epoch + 1}, Loss: {train_loss:.3f}, Train Acc: {train_acc:.2f}%, Test Acc: {test_acc:.2f}%')

print('训练完成')

# 绘制训练和测试准确率曲线
plt.figure(figsize=(10, 5))
plt.plot(train_accs, label='Train Accuracy')
plt.plot(test_accs, label='Test Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy (%)')
plt.legend()
plt.title('Training and Test Accuracy')
plt.show()

# 绘制训练损失曲线
plt.figure(figsize=(10, 5))
plt.plot(train_losses, label='Train Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.title('Training Loss')
plt.show()

# 查看每个类别的准确率
class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
with torch.no_grad():
    for data in testloader:
        images, labels = data[0].to(device), data[1].to(device)
        outputs = net(images)
        _, predicted = torch.max(outputs, 1)
        c = (predicted == labels).squeeze()
        for i in range(len(labels)):
            label = labels[i]
            class_correct[label] += c[i].item()
            class_total[label] += 1

for i in range(10):
    print(f'类别 {classes[i]} 的准确率: {100 * class_correct[i] / class_total[i]:.2f}%')

微信图片_20251023222201_2647_35

posted @ 2025-10-23 22:28  hxzzzzz  阅读(5)  评论(0)    收藏  举报