点击查看代码
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np
# 设置设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# 数据预处理
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
)
# 加载训练集和测试集
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=64,
shuffle=False, num_workers=2)
# 定义类别
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
# 定义网络模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 32, 3, padding=1)
self.conv2 = nn.Conv2d(32, 64, 3, padding=1)
self.conv3 = nn.Conv2d(64, 64, 3, padding=1)
self.pool = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(64 * 4 * 4, 64)
self.fc2 = nn.Linear(64, 10)
self.relu = nn.ReLU()
def forward(self, x):
x = self.pool(self.relu(self.conv1(x)))
x = self.pool(self.relu(self.conv2(x)))
x = self.relu(self.conv3(x))
x = x.view(-1, 64 * 4 * 4)
x = self.relu(self.fc1(x))
x = self.fc2(x)
return x
net = Net().to(device)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)
# 训练网络
train_losses = []
train_accs = []
test_accs = []
epochs = 10
for epoch in range(epochs):
running_loss = 0.0
correct = 0
total = 0
for i, data in enumerate(trainloader, 0):
inputs, labels = data[0].to(device), data[1].to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
_, predicted = outputs.max(1)
total += labels.size(0)
correct += predicted.eq(labels).sum().item()
# 计算训练集准确率
train_acc = 100. * correct / total
train_loss = running_loss / len(trainloader)
train_losses.append(train_loss)
train_accs.append(train_acc)
# 在测试集上评估
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data[0].to(device), data[1].to(device)
outputs = net(images)
_, predicted = outputs.max(1)
total += labels.size(0)
correct += predicted.eq(labels).sum().item()
test_acc = 100. * correct / total
test_accs.append(test_acc)
print(f'Epoch {epoch + 1}, Loss: {train_loss:.3f}, Train Acc: {train_acc:.2f}%, Test Acc: {test_acc:.2f}%')
print('训练完成')
# 绘制训练和测试准确率曲线
plt.figure(figsize=(10, 5))
plt.plot(train_accs, label='Train Accuracy')
plt.plot(test_accs, label='Test Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy (%)')
plt.legend()
plt.title('Training and Test Accuracy')
plt.show()
# 绘制训练损失曲线
plt.figure(figsize=(10, 5))
plt.plot(train_losses, label='Train Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.title('Training Loss')
plt.show()
# 查看每个类别的准确率
class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
with torch.no_grad():
for data in testloader:
images, labels = data[0].to(device), data[1].to(device)
outputs = net(images)
_, predicted = torch.max(outputs, 1)
c = (predicted == labels).squeeze()
for i in range(len(labels)):
label = labels[i]
class_correct[label] += c[i].item()
class_total[label] += 1
for i in range(10):
print(f'类别 {classes[i]} 的准确率: {100 * class_correct[i] / class_total[i]:.2f}%')
![微信图片_20251023222201_2647_35]()