大数据中台-全网商品统计数据集

 1 `product_id` int(11) '商品id',
 2 `product_name` varchar(255) '商品名称',
 3 `product_info` varchar(255) '商品介绍',
 4 `img` varchar(255) '商品主图',
 5 `unit` varchar(20) '单位',
 6 `source` int(11) '商品来源:1自营2京东6阿里巴巴7天猫',
 7 `category_name` varchar(255) '分类名称',
 8 `brand_name` varchar(255) '品牌名称',
 9 `origin` varchar(255) '产地来源',
10 `cost_price` decimal(10,2) '成本价',
11 `sale_price` decimal(10,2) '售价',
12 `market_price` decimal(10,2) '市场价',
13 `activity_price` decimal(10,2) '活动价',
14 `agreement_price` decimal(10,2) '协议价',
15 `guide_price` decimal(10,2) '指导价',
16 `sale` int(11) '销量',
17 `stock` int(11) '总库存',
18 `choose_count` int(11) '选品人数',
19 `activity_rate` decimal(10,2) '活动利润率',
20 `min_profits` decimal(10,2) '最小利润',
21 `max_profits` decimal(10,2) '最大利润',
22 `discount` decimal(10,2) '折扣',
23 `create_time` int(11) '上架时间'
源数据字段列表
 1 select
 2     a.product_id as ID,
 3     a.product_name  as 商品名称,
 4     a.product_info as 商品介绍,
 5     a.img as 商品主图,
 6     a.unit as 商品单位,
 7     a.source as 商品平台来源,
 8     a.category_name as 商品类别,
 9     a.brand_name as 商品品牌,
10     a.origin as 产地,
11     a.cost_price as 成本价,
12     a.sale_price as 售价,
13     a.market_price as 市场价,
14     a.activity_price as 活动价,
15     a.agreement_price as 协议价,
16     a.guide_price as 指导价,
17     a.sale as 销售数量,
18     a.stock as 总库存,
19     a.choose_count as 铺货人数,
20     a.activity_rate as 活动利润率,
21     a.min_profits as 最小利润,
22     a.max_profits as 最大利润,
23     a.discount as 折扣,
24     a.sale*a.sale_price as 单品销售额,
25     a.create_time as 时间
26 from
27     eb_echart_product as a
28 order by
29     a.sale desc
30 limit 100
全部商品列表(销量前100的列表)
 1 select
 2     a.product_id as ID,
 3     a.product_name  as 商品名称,
 4     a.product_info as 商品介绍,
 5     a.img as 商品主图,
 6     a.unit as 商品单位,
 7     a.source as 商品平台来源,
 8     a.category_name as 商品类别,
 9     a.brand_name as 商品品牌,
10     a.origin as 产地,
11     a.cost_price as 成本价,
12     a.sale_price as 售价,
13     a.market_price as 市场价,
14     a.activity_price as 活动价,
15     a.agreement_price as 协议价,
16     a.guide_price as 指导价,
17     a.sale as 销售数量,
18     a.stock as 总库存,
19     a.choose_count as 铺货人数,
20     a.activity_rate as 活动利润率,
21     a.min_profits as 最小利润,
22     a.max_profits as 最大利润,
23     a.discount as 折扣,
24     a.sale*a.sale_price as 单品销售额,
25     a.create_time as 时间
26 from
27     eb_echart_product as a
28 where source = 1
29 order by
30     a.sale desc
31 limit 100
来源为云仓的商品列表(销量前100的列表)
 1 select
 2     a.product_id as ID,
 3     a.product_name  as 商品名称,
 4     a.product_info as 商品介绍,
 5     a.img as 商品主图,
 6     a.unit as 商品单位,
 7     a.source as 商品平台来源,
 8     a.category_name as 商品类别,
 9     a.brand_name as 商品品牌,
10     a.origin as 产地,
11     a.cost_price as 成本价,
12     a.sale_price as 售价,
13     a.market_price as 市场价,
14     a.activity_price as 活动价,
15     a.agreement_price as 协议价,
16     a.guide_price as 指导价,
17     a.sale as 销售数量,
18     a.stock as 总库存,
19     a.choose_count as 铺货人数,
20     a.activity_rate as 活动利润率,
21     a.min_profits as 最小利润,
22     a.max_profits as 最大利润,
23     a.discount as 折扣,
24     a.sale*a.sale_price as 单品销售额,
25     a.create_time as 时间
26 from
27     eb_echart_product as a
28 where source = 2
29 order by
30     a.sale desc
31 limit 100
来源为京东的商品列表(销量前100的列表)
 1 select
 2     a.product_id as ID,
 3     a.product_name  as 商品名称,
 4     a.product_info as 商品介绍,
 5     a.img as 商品主图,
 6     a.unit as 商品单位,
 7     a.source as 商品平台来源,
 8     a.category_name as 商品类别,
 9     a.brand_name as 商品品牌,
10     a.origin as 产地,
11     a.cost_price as 成本价,
12     a.sale_price as 售价,
13     a.market_price as 市场价,
14     a.activity_price as 活动价,
15     a.agreement_price as 协议价,
16     a.guide_price as 指导价,
17     a.sale as 销售数量,
18     a.stock as 总库存,
19     a.choose_count as 铺货人数,
20     a.activity_rate as 活动利润率,
21     a.min_profits as 最小利润,
22     a.max_profits as 最大利润,
23     a.discount as 折扣,
24     a.sale*a.sale_price as 单品销售额,
25     a.create_time as 时间
26 from
27     eb_echart_product as a
28 where source = 6
29 order by
30     a.sale desc
31 limit 100
来源为阿里的商品列表(销量前100的列表)
 1 select
 2     a.product_id as ID,
 3     a.product_name  as 商品名称,
 4     a.product_info as 商品介绍,
 5     a.img as 商品主图,
 6     a.unit as 商品单位,
 7     a.source as 商品平台来源,
 8     a.category_name as 商品类别,
 9     a.brand_name as 商品品牌,
10     a.origin as 产地,
11     a.cost_price as 成本价,
12     a.sale_price as 售价,
13     a.market_price as 市场价,
14     a.activity_price as 活动价,
15     a.agreement_price as 协议价,
16     a.guide_price as 指导价,
17     a.sale as 销售数量,
18     a.stock as 总库存,
19     a.choose_count as 铺货人数,
20     a.activity_rate as 活动利润率,
21     a.min_profits as 最小利润,
22     a.max_profits as 最大利润,
23     a.discount as 折扣,
24     a.sale*a.sale_price as 单品销售额,
25     a.create_time as 时间
26 from
27     eb_echart_product as a
28 where source = 7
29 order by
30     a.sale desc
31 limit 100
来源为天猫的商品列表(销量前100的列表)
1 SELECT
2   '全部商品销售总额' AS 当前销售总额,
3     SUM(a.sale*a.sale_price) AS 金额
4 FROM
5     eb_echart_product AS a
全部商品销售总额
1 SELECT
2   '云仓商品销售总额' AS 当前销售总额,
3     SUM(a.sale*a.sale_price) AS 金额
4 FROM
5     eb_echart_product AS a
6 where source = 1
来源为云仓商品销售总额
1 SELECT
2   '京东商品销售总额' AS 当前销售总额,
3     SUM(a.sale*a.sale_price) AS 金额
4 FROM
5     eb_echart_product AS a
6 where source = 2
来源为京东商品销售总额
1 SELECT
2   '阿里商品销售总额' AS 当前销售总额,
3     SUM(a.sale*a.sale_price) AS 金额
4 FROM
5     eb_echart_product AS a
6 where source = 6
来源为阿里商品销售总额
1 SELECT
2   '天猫商品销售总额' AS 当前销售总额,
3     SUM(a.sale*a.sale_price) AS 金额
4 FROM
5     eb_echart_product AS a
6 where source = 7
来源为天猫商品销售总额
1 SELECT
2   '全部商品总销售数量' AS 当前销售总数,
3     SUM(a.sale) AS 数量
4 FROM
5     eb_echart_product AS a
全部商品总销售数量
1 SELECT
2   '云仓商品总销售数量' AS 当前销售总数,
3     SUM(a.sale) AS 数量
4 FROM
5     eb_echart_product AS a
6 where source = 1
来源为云仓商品总销售数量
1 SELECT
2   '京东商品总销售数量' AS 当前销售总数,
3     SUM(a.sale) AS 数量
4 FROM
5     eb_echart_product AS a
6 where source = 2
来源为京东商品总销售数量
1 SELECT
2   '阿里商品总销售数量' AS 当前销售总数,
3     SUM(a.sale) AS 数量
4 FROM
5     eb_echart_product AS a
6 where source = 6
来源为阿里里商品总销售数量
1 SELECT
2   '天猫商品总销售数量' AS 当前销售总数,
3     SUM(a.sale) AS 数量
4 FROM
5     eb_echart_product AS a
6 where source = 7
来源为天猫商品总销售数量
1 SELECT
2     '全部商品数量统计' AS 全部商品数量统计,
3     count(a.product_id) AS 商品数量
4 FROM
5     eb_echart_product AS a
全部商品数量统计
1 SELECT
2     '单独统计云仓商品数量' AS 单独统计云仓商品数量,
3     count(a.product_id) AS 商品数量
4 FROM
5     eb_echart_product AS a
6 WHERE
7     a.source = 1
单独统计来源为云仓商品数量
1 SELECT
2     '单独统计京东商品数量' AS 单独统计京东商品数量,
3     count(a.product_id) AS 商品数量
4 FROM
5     eb_echart_product AS a
6 WHERE
7     a.source = 2
单独统计来源为京东商品数量
1 SELECT
2     '单独统计阿里商品数量' AS 单独统计阿里商品数量,
3     count(a.product_id) AS 商品数量
4 FROM
5     eb_echart_product AS a
6 WHERE
7     a.source = 6
单独统计来源为阿里商品数量
1 SELECT
2     '单独统计天猫商品数量' AS 单独统计天猫商品数量,
3     count(a.product_id) AS 商品数量
4 FROM
5     eb_echart_product AS a
6 WHERE
7     a.source = 7
单独统计来源为天猫商品数量'
 1 SELECT
 2     (CASE WHEN source = 1 THEN '云仓' WHEN source = 2 THEN '京东' WHEN source = 6 THEN '阿里' ELSE '天猫' END ) AS 来源,
 3     count(product_id) as 数量
 4 FROM
 5     eb_echart_product
 6 WHERE
 7     product_id > 0
 8 GROUP BY
 9     source
10 ORDER BY
11     source ASC
12 limit 4
分组同时统计来源为云仓,京东,阿里,天猫的商品数量
 1 SELECT
 2         (CASE WHEN source = 1 THEN '云仓' WHEN source = 2 THEN '京东' WHEN source = 6 THEN '阿里' ELSE '天猫' END ) AS 来源,
 3     SUM(sale*sale_price) as 销售客
 4 FROM
 5     eb_echart_product
 6 WHERE
 7     product_id > 0
 8 GROUP BY
 9     source
10 ORDER BY
11     source ASC
12 limit 4
分组同时统计来源为云仓,京东,阿里,天猫的商品销售额
 1 SELECT
 2     (CASE WHEN source = 1 THEN '云仓' WHEN source = 2 THEN '京东' WHEN source = 6 THEN '阿里' ELSE '天猫' END ) AS 来源,
 3     SUM(sale) as 销售数量
 4 FROM
 5     eb_echart_product
 6 WHERE
 7     product_id > 0
 8 GROUP BY
 9     source
10 ORDER BY
11     source ASC
12 limit 4
分组同时统计来源为云仓,京东,阿里,天猫的商品销售数量
 1 SELECT
 2     category_name AS 分类,
 3     count(product_id) as 数量
 4 FROM
 5     eb_echart_product
 6 WHERE
 7     product_id > 0 and category_name !=''
 8 GROUP BY
 9     category_name
10 ORDER BY
11     数量 DESC
12 limit 100
分组统计各类别的商品数量
 1 SELECT
 2     category_name AS 分类,
 3     SUM(sale*sale_price) as 销售额
 4 FROM
 5     eb_echart_product
 6 WHERE
 7     product_id > 0 and category_name !=''
 8 GROUP BY
 9     category_name
10 ORDER BY
11     销售额 DESC
12 limit 100
分组统计各类别的商品销售额
SELECT
    category_name AS 分类,
    SUM(sale) as 销售数量
FROM
    eb_echart_product
WHERE
    product_id > 0 and category_name !=''
GROUP BY
    category_name
ORDER BY
    销售数量 DESC
limit 100
分组统计各类别的商品销售数量
 1 SELECT
 2         category_name AS 分类,
 3         source AS 来源,
 4     count(product_id) as 数量
 5 FROM
 6     eb_echart_product
 7 WHERE
 8     product_id > 0 and category_name !='' and source = 1
 9 GROUP BY
10     category_name
11 ORDER BY
12     数量 DESC
13 limit 100
分组统计来源为云仓各类别的商品数量
 1 SELECT
 2         category_name AS 分类,
 3         source AS 来源,
 4     SUM(sale*sale_price) as 销售额
 5 FROM
 6     eb_echart_product
 7 WHERE
 8     product_id > 0 and category_name !='' and source = 1
 9 GROUP BY
10     category_name
11 ORDER BY
12     销售额 DESC
13 limit 100
分组统计来源为云仓的各类别的商品销售额
 1 SELECT
 2         category_name AS 分类,
 3         source AS 来源,
 4     SUM(sale) as 销售数量
 5 FROM
 6     eb_echart_product
 7 WHERE
 8     product_id > 0 and category_name !='' and source = 1
 9 GROUP BY
10     category_name
11 ORDER BY
12     销售数量 DESC
13 limit 100
分组统计来源为云仓的各类别的商品销售数量
 1 SELECT
 2         category_name AS 分类,
 3         source AS 来源,
 4     count(product_id) as 数量
 5 FROM
 6     eb_echart_product
 7 WHERE
 8     product_id > 0 and category_name !='' and source = 2
 9 GROUP BY
10     category_name
11 ORDER BY
12     数量 DESC
13 limit 100
分组统计来源为京东的各类别的商品数量
 1 SELECT
 2         category_name AS 分类,
 3         source AS 来源,
 4     SUM(sale*sale_price) as 销售额
 5 FROM
 6     eb_echart_product
 7 WHERE
 8     product_id > 0 and category_name !='' and source = 2
 9 GROUP BY
10     category_name
11 ORDER BY
12     销售额 DESC
13 limit 100
分组统计来源为京东的各类别的商品销售额
 1 SELECT
 2         category_name AS 分类,
 3         source AS 来源,
 4     SUM(sale) as 销售数量
 5 FROM
 6     eb_echart_product
 7 WHERE
 8     product_id > 0 and category_name !='' and source = 2
 9 GROUP BY
10     category_name
11 ORDER BY
12     销售数量 DESC
13 limit 100
分组统计来源为京东的各类别的商品销售数量
 1 SELECT
 2         category_name AS 分类,
 3         source AS 来源,
 4     count(product_id) as 数量
 5 FROM
 6     eb_echart_product
 7 WHERE
 8     product_id > 0 and category_name !='' and source = 6
 9 GROUP BY
10     category_name
11 ORDER BY
12     数量 DESC
13 limit 100
分组统计来源为阿里的各类别的商品数量
 1 SELECT
 2         category_name AS 分类,
 3         source AS 来源,
 4     SUM(sale*sale_price) as 销售额
 5 FROM
 6     eb_echart_product
 7 WHERE
 8     product_id > 0 and category_name !='' and source = 6
 9 GROUP BY
10     category_name
11 ORDER BY
12     销售额 DESC
13 limit 100
分组统计来源为阿里的各类别的商品销售额
 1 SELECT
 2         category_name AS 分类,
 3         source AS 来源,
 4     SUM(sale) as 销售数量
 5 FROM
 6     eb_echart_product
 7 WHERE
 8     product_id > 0 and category_name !='' and source = 6
 9 GROUP BY
10     category_name
11 ORDER BY
12     销售数量 DESC
13 limit 100
分组统计来源为阿里的各类别的商品销售数量
 1 SELECT
 2         category_name AS 分类,
 3         source AS 来源,
 4     count(product_id) as 数量
 5 FROM
 6     eb_echart_product
 7 WHERE
 8     product_id > 0 and category_name !='' and source = 7
 9 GROUP BY
10     category_name
11 ORDER BY
12     数量 DESC
13 limit 100
分组统计来源为天猫的各类别的商品数量
 1 SELECT
 2         category_name AS 分类,
 3         source AS 来源,
 4     SUM(sale*sale_price) as 销售额
 5 FROM
 6     eb_echart_product
 7 WHERE
 8     product_id > 0 and category_name !='' and source = 7
 9 GROUP BY
10     category_name
11 ORDER BY
12     销售额 DESC
13 limit 100
分组统计来源为天猫的各类别的商品销售额
 1 SELECT
 2         category_name AS 分类,
 3         source AS 来源,
 4     SUM(sale) as 销售数量
 5 FROM
 6     eb_echart_product
 7 WHERE
 8     product_id > 0 and category_name !='' and source = 7
 9 GROUP BY
10     category_name
11 ORDER BY
12     销售数量 DESC
13 limit 100
分组统计来源为天猫的各类别的商品销售数量
 1 SELECT
 2         brand_name AS 品牌,
 3     count(product_id) as 数量
 4 FROM
 5     eb_echart_product
 6 WHERE
 7     product_id > 0 and brand_name !=''
 8 GROUP BY
 9     brand_name
10 ORDER BY
11     数量 DESC
12 limit 100
分组统计各品牌的商品数量
 1 SELECT
 2         brand_name AS 品牌,
 3     SUM(sale*sale_price) as 销售额
 4 FROM
 5     eb_echart_product
 6 WHERE
 7     product_id > 0 and brand_name !=''
 8 GROUP BY
 9     brand_name
10 ORDER BY
11     销售额 DESC
12 limit 100
分组统计各品牌的商品销售额
 1 SELECT
 2         brand_name AS 品牌,
 3     SUM(sale) as 销售数量
 4 FROM
 5     eb_echart_product
 6 WHERE
 7     product_id > 0 and brand_name !=''
 8 GROUP BY
 9     brand_name
10 ORDER BY
11     销售数量 DESC
12 limit 100
分组统计各品牌的商品销售数量
 1 SELECT
 2         brand_name AS 品牌,
 3         source AS 来源,
 4     count(product_id) as 数量
 5 FROM
 6     eb_echart_product
 7 WHERE
 8     product_id > 0 and brand_name !='' and source = 1
 9 GROUP BY
10     brand_name
11 ORDER BY
12     数量 DESC
13 limit 100
分组统计来源为云仓各品牌的商品数量
 1 SELECT
 2         brand_name AS 品牌,
 3         source AS 来源,
 4     SUM(sale*sale_price) as 销售额
 5 FROM
 6     eb_echart_product
 7 WHERE
 8     product_id > 0 and brand_name !='' and source = 1
 9 GROUP BY
10     brand_name
11 ORDER BY
12     销售额 DESC
13 limit 100
分组统计来源为云仓的各品牌的商品销售额
 1 SELECT
 2         brand_name AS 品牌,
 3         source AS 来源,
 4     SUM(sale) as 销售数量
 5 FROM
 6     eb_echart_product
 7 WHERE
 8     product_id > 0 and brand_name !='' and source = 1
 9 GROUP BY
10     brand_name
11 ORDER BY
12     销售数量 DESC
13 limit 100
分组统计来源为云仓的各品牌的商品销售数量
 1 SELECT
 2         brand_name AS 品牌,
 3         source AS 来源,
 4     count(product_id) as 数量
 5 FROM
 6     eb_echart_product
 7 WHERE
 8     product_id > 0 and brand_name !='' and source = 2
 9 GROUP BY
10     brand_name
11 ORDER BY
12     数量 DESC
13 limit 100
分组统计来源为京东的各品牌的商品数量
 1 SELECT
 2         brand_name AS 品牌,
 3         source AS 来源,
 4     SUM(sale*sale_price) as 销售额
 5 FROM
 6     eb_echart_product
 7 WHERE
 8     product_id > 0 and brand_name !='' and source = 2
 9 GROUP BY
10     brand_name
11 ORDER BY
12     销售额 DESC
13 limit 100
分组统计来源为京东的各品牌的商品销售额
 1 SELECT
 2         brand_name AS 品牌,
 3         source AS 来源,
 4     SUM(sale) as 销售数量
 5 FROM
 6     eb_echart_product
 7 WHERE
 8     product_id > 0 and brand_name !='' and source = 2
 9 GROUP BY
10     brand_name
11 ORDER BY
12     销售数量 DESC
13 limit 100
分组统计来源为京东的各品牌的商品销售数量
 1 SELECT
 2         brand_name AS 品牌,
 3         source AS 来源,
 4     count(product_id) as 数量
 5 FROM
 6     eb_echart_product
 7 WHERE
 8     product_id > 0 and brand_name !='' and source = 6
 9 GROUP BY
10     brand_name
11 ORDER BY
12     数量 DESC
13 limit 100
分组统计来源为阿里的各品牌的商品数量
 1 SELECT
 2         brand_name AS 品牌,
 3         source AS 来源,
 4     SUM(sale*sale_price) as 销售额
 5 FROM
 6     eb_echart_product
 7 WHERE
 8     product_id > 0 and brand_name !='' and source = 6
 9 GROUP BY
10     brand_name
11 ORDER BY
12     销售额 DESC
13 limit 100
分组统计来源为阿里的各品牌的商品销售额
 1 SELECT
 2         brand_name AS 品牌,
 3         source AS 来源,
 4     SUM(sale) as 销售数量
 5 FROM
 6     eb_echart_product
 7 WHERE
 8     product_id > 0 and brand_name !='' and source = 6
 9 GROUP BY
10     brand_name
11 ORDER BY
12     销售数量 DESC
13 limit 100
分组统计来源为阿里的各品牌的商品销售数量
 1 SELECT
 2         brand_name AS 品牌,
 3         source AS 来源,
 4     count(product_id) as 数量
 5 FROM
 6     eb_echart_product
 7 WHERE
 8     product_id > 0 and brand_name !='' and source = 7
 9 GROUP BY
10     brand_name
11 ORDER BY
12     数量 DESC
13 limit 100
分组统计来源为天猫的各品牌的商品数量
 1 SELECT
 2         brand_name AS 品牌,
 3         source AS 来源,
 4     SUM(sale*sale_price) as 销售额
 5 FROM
 6     eb_echart_product
 7 WHERE
 8     product_id > 0 and brand_name !='' and source = 7
 9 GROUP BY
10     brand_name
11 ORDER BY
12     销售额 DESC
13 limit 100
分组统计来源为天猫的各品牌的商品销售额
 1 SELECT
 2         brand_name AS 品牌,
 3         source AS 来源,
 4     SUM(sale) as 销售数量
 5 FROM
 6     eb_echart_product
 7 WHERE
 8     product_id > 0 and brand_name !='' and source = 7
 9 GROUP BY
10     brand_name
11 ORDER BY
12     销售数量 DESC
13 limit 100
分组统计来源为天猫的各品牌的商品销售数量
 1 SELECT
 2         origin AS 产地,
 3     count(product_id) as 数量
 4 FROM
 5     eb_echart_product
 6 WHERE
 7     product_id > 0 and origin !=''
 8 GROUP BY
 9     origin
10 ORDER BY
11     数量 DESC
12 limit 100
分组统计各产地的商品数量
 1 SELECT
 2         origin AS 产地,
 3     SUM(sale*sale_price) as 销售额
 4 FROM
 5     eb_echart_product
 6 WHERE
 7     product_id > 0 and origin !=''
 8 GROUP BY
 9     origin
10 ORDER BY
11     销售额 DESC
12 limit 100
分组统计各产地的商品销售额
 1 SELECT
 2         origin AS 产地,
 3     SUM(sale) as 销售数量
 4 FROM
 5     eb_echart_product
 6 WHERE
 7     product_id > 0 and origin !=''
 8 GROUP BY
 9     origin
10 ORDER BY
11     销售数量 DESC
12 limit 100
分组统计各产地的商品销售数量
 1 SELECT
 2         origin AS 产地,
 3         source AS 来源,
 4     count(product_id) as 数量
 5 FROM
 6     eb_echart_product
 7 WHERE
 8     product_id > 0 and origin !='' and source = 1
 9 GROUP BY
10     origin
11 ORDER BY
12     数量 DESC
13 limit 100
统计来源为云仓各产地的商品数量
 1 SELECT
 2         origin AS 产地,
 3         source AS 来源,
 4     SUM(sale*sale_price) as 销售额
 5 FROM
 6     eb_echart_product
 7 WHERE
 8     product_id > 0 and origin !='' and source = 1
 9 GROUP BY
10     origin
11 ORDER BY
12     销售额 DESC
13 limit 100
分组统计来源为云仓的各产地的商品销售额
 1 SELECT
 2         origin AS 产地,
 3         source AS 来源,
 4     SUM(sale) as 销售数量
 5 FROM
 6     eb_echart_product
 7 WHERE
 8     product_id > 0 and origin !='' and source = 1
 9 GROUP BY
10     origin
11 ORDER BY
12     销售数量 DESC
13 limit 100
分组统计来源为云仓的各产地的商品销售数量
 1 SELECT
 2         origin AS 产地,
 3         source AS 来源,
 4     count(product_id) as 数量
 5 FROM
 6     eb_echart_product
 7 WHERE
 8     product_id > 0 and origin !='' and source = 2
 9 GROUP BY
10     origin
11 ORDER BY
12     数量 DESC
13 limit 100
分组统计来源为京东的各产地的商品数量
 1 SELECT
 2         origin AS 产地,
 3         source AS 来源,
 4     SUM(sale*sale_price) as 销售额
 5 FROM
 6     eb_echart_product
 7 WHERE
 8     product_id > 0 and origin !='' and source = 2
 9 GROUP BY
10     origin
11 ORDER BY
12     销售额 DESC
13 limit 100
分组统计来源为京东的各产地的商品销售额
 1 SELECT
 2         origin AS 产地,
 3         source AS 来源,
 4     SUM(sale) as 销售数量
 5 FROM
 6     eb_echart_product
 7 WHERE
 8     product_id > 0 and origin !='' and source = 2
 9 GROUP BY
10     origin
11 ORDER BY
12     销售数量 DESC
13 limit 100
分组统计来源为京东的各产地的商品销售数量
 1 SELECT
 2         origin AS 产地,
 3         source AS 来源,
 4     count(product_id) as 数量
 5 FROM
 6     eb_echart_product
 7 WHERE
 8     product_id > 0 and origin !='' and source = 6
 9 GROUP BY
10     origin
11 ORDER BY
12     数量 DESC
13 limit 100
分组统计来源为阿里的各产地的商品数量
 1 SELECT
 2         origin AS 产地,
 3         source AS 来源,
 4     SUM(sale*sale_price) as 销售额
 5 FROM
 6     eb_echart_product
 7 WHERE
 8     product_id > 0 and origin !='' and source = 6
 9 GROUP BY
10     origin
11 ORDER BY
12     销售额 DESC
13 limit 100
分组统计来源为阿里的各产地的商品销售额
 1 SELECT
 2         origin AS 产地,
 3         source AS 来源,
 4     SUM(sale) as 销售数量
 5 FROM
 6     eb_echart_product
 7 WHERE
 8     product_id > 0 and origin !='' and source = 6
 9 GROUP BY
10     origin
11 ORDER BY
12     销售数量 DESC
13 limit 100
分组统计来源为阿里的各产地的商品销售数量
 1 SELECT
 2         origin AS 产地,
 3         source AS 来源,
 4     count(product_id) as 数量
 5 FROM
 6     eb_echart_product
 7 WHERE
 8     product_id > 0 and origin !='' and source = 7
 9 GROUP BY
10     origin
11 ORDER BY
12     数量 DESC
13 limit 100
分组统计来源为天猫的各产地的商品数量
 1 SELECT
 2         origin AS 产地,
 3         source AS 来源,
 4     SUM(sale*sale_price) as 销售额
 5 FROM
 6     eb_echart_product
 7 WHERE
 8     product_id > 0 and origin !='' and source = 7
 9 GROUP BY
10     origin
11 ORDER BY
12     销售额 DESC
13 limit 100
分组统计来源为天猫的各产地的商品销售额
 1 SELECT
 2         origin AS 产地,
 3         source AS 来源,
 4     SUM(sale) as 销售数量
 5 FROM
 6     eb_echart_product
 7 WHERE
 8     product_id > 0 and origin !='' and source = 7
 9 GROUP BY
10     origin
11 ORDER BY
12     销售数量 DESC
13 limit 100
分组统计来源为天猫的各产地的商品销售数量
 1 select
 2     a.product_id as ID,
 3     a.product_name  as 商品名称,
 4     a.product_info as 商品介绍,
 5     a.img as 商品主图,
 6     a.unit as 商品单位,
 7     a.source as 商品平台来源,
 8     a.category_name as 商品类别,
 9     a.brand_name as 商品品牌,
10     a.origin as 产地,
11     a.cost_price as 成本价,
12     a.sale_price as 售价,
13     a.market_price as 市场价,
14     a.activity_price as 活动价,
15     a.agreement_price as 协议价,
16     a.guide_price as 指导价,
17     a.sale as 销售数量,
18     a.stock as 总库存,
19     a.choose_count as 铺货人数,
20     a.activity_rate as 活动利润率,
21     a.min_profits as 最小利润,
22     a.max_profits as 最大利润,
23     a.discount as 折扣,
24     a.sale*a.sale_price as 单品销售额,
25     a.create_time as 时间
26 from
27     eb_echart_product as a
28 order by
29     a.choose_count desc
30 limit 100
全部商品中铺货前100的商品列表
 1 select
 2     a.product_id as ID,
 3     a.product_name  as 商品名称,
 4     a.product_info as 商品介绍,
 5     a.img as 商品主图,
 6     a.unit as 商品单位,
 7     a.source as 商品平台来源,
 8     a.category_name as 商品类别,
 9     a.brand_name as 商品品牌,
10     a.origin as 产地,
11     a.cost_price as 成本价,
12     a.sale_price as 售价,
13     a.market_price as 市场价,
14     a.activity_price as 活动价,
15     a.agreement_price as 协议价,
16     a.guide_price as 指导价,
17     a.sale as 销售数量,
18     a.stock as 总库存,
19     a.choose_count as 铺货人数,
20     a.activity_rate as 活动利润率,
21     a.min_profits as 最小利润,
22     a.max_profits as 最大利润,
23     a.discount as 折扣,
24     a.sale*a.sale_price as 单品销售额,
25     a.create_time as 时间
26 from
27     eb_echart_product as a
28 where source = 1
29 order by
30     a.choose_count desc
31 limit 100
铺货前100的云仓商品列表
 1 select
 2     a.product_id as ID,
 3     a.product_name  as 商品名称,
 4     a.product_info as 商品介绍,
 5     a.img as 商品主图,
 6     a.unit as 商品单位,
 7     a.source as 商品平台来源,
 8     a.category_name as 商品类别,
 9     a.brand_name as 商品品牌,
10     a.origin as 产地,
11     a.cost_price as 成本价,
12     a.sale_price as 售价,
13     a.market_price as 市场价,
14     a.activity_price as 活动价,
15     a.agreement_price as 协议价,
16     a.guide_price as 指导价,
17     a.sale as 销售数量,
18     a.stock as 总库存,
19     a.choose_count as 铺货人数,
20     a.activity_rate as 活动利润率,
21     a.min_profits as 最小利润,
22     a.max_profits as 最大利润,
23     a.discount as 折扣,
24     a.sale*a.sale_price as 单品销售额,
25     a.create_time as 时间
26 from
27     eb_echart_product as a
28 where source = 2
29 order by
30     a.choose_count desc
31 limit 100
铺货前100的京东商品列表
 1 select
 2     a.product_id as ID,
 3     a.product_name  as 商品名称,
 4     a.product_info as 商品介绍,
 5     a.img as 商品主图,
 6     a.unit as 商品单位,
 7     a.source as 商品平台来源,
 8     a.category_name as 商品类别,
 9     a.brand_name as 商品品牌,
10     a.origin as 产地,
11     a.cost_price as 成本价,
12     a.sale_price as 售价,
13     a.market_price as 市场价,
14     a.activity_price as 活动价,
15     a.agreement_price as 协议价,
16     a.guide_price as 指导价,
17     a.sale as 销售数量,
18     a.stock as 总库存,
19     a.choose_count as 铺货人数,
20     a.activity_rate as 活动利润率,
21     a.min_profits as 最小利润,
22     a.max_profits as 最大利润,
23     a.discount as 折扣,
24     a.sale*a.sale_price as 单品销售额,
25     a.create_time as 时间
26 from
27     eb_echart_product as a
28 where source = 6
29 order by
30     a.choose_count desc
31 limit 100
铺货前100的阿里商品列表
 1 select
 2     a.product_id as ID,
 3     a.product_name  as 商品名称,
 4     a.product_info as 商品介绍,
 5     a.img as 商品主图,
 6     a.unit as 商品单位,
 7     a.source as 商品平台来源,
 8     a.category_name as 商品类别,
 9     a.brand_name as 商品品牌,
10     a.origin as 产地,
11     a.cost_price as 成本价,
12     a.sale_price as 售价,
13     a.market_price as 市场价,
14     a.activity_price as 活动价,
15     a.agreement_price as 协议价,
16     a.guide_price as 指导价,
17     a.sale as 销售数量,
18     a.stock as 总库存,
19     a.choose_count as 铺货人数,
20     a.activity_rate as 活动利润率,
21     a.min_profits as 最小利润,
22     a.max_profits as 最大利润,
23     a.discount as 折扣,
24     a.sale*a.sale_price as 单品销售额,
25     a.create_time as 时间
26 from
27     eb_echart_product as a
28 where source = 7
29 order by
30     a.choose_count desc
31 limit 100
铺货前100的天猫商品列表
 1 select
 2     a.product_id as ID,
 3     a.product_name  as 商品名称,
 4     a.product_info as 商品介绍,
 5     a.img as 商品主图,
 6     a.unit as 商品单位,
 7     a.source as 商品平台来源,
 8     a.category_name as 商品类别,
 9     a.brand_name as 商品品牌,
10     a.origin as 产地,
11     a.cost_price as 成本价,
12     a.sale_price as 售价,
13     a.market_price as 市场价,
14     a.activity_price as 活动价,
15     a.agreement_price as 协议价,
16     a.guide_price as 指导价,
17     a.sale as 销售数量,
18     a.stock as 总库存,
19     a.choose_count as 铺货人数,
20     a.activity_rate as 活动利润率,
21     a.min_profits as 最小利润,
22     a.max_profits as 最大利润,
23     a.discount as 折扣,
24     a.sale*a.sale_price as 单品销售额,
25     a.create_time as 时间
26 from
27     eb_echart_product as a
28 order by
29     单品销售额 desc
30 limit 100
销售额前100的商品列表
 1 select
 2     a.product_id as ID,
 3     a.product_name  as 商品名称,
 4     a.product_info as 商品介绍,
 5     a.img as 商品主图,
 6     a.unit as 商品单位,
 7     a.source as 商品平台来源,
 8     a.category_name as 商品类别,
 9     a.brand_name as 商品品牌,
10     a.origin as 产地,
11     a.cost_price as 成本价,
12     a.sale_price as 售价,
13     a.market_price as 市场价,
14     a.activity_price as 活动价,
15     a.agreement_price as 协议价,
16     a.guide_price as 指导价,
17     a.sale as 销售数量,
18     a.stock as 总库存,
19     a.choose_count as 铺货人数,
20     a.activity_rate as 活动利润率,
21     a.min_profits as 最小利润,
22     a.max_profits as 最大利润,
23     a.discount as 折扣,
24     a.sale*a.sale_price as 单品销售额,
25     a.create_time as 时间
26 from
27     eb_echart_product as a
28 where source = 1
29 order by
30     单品销售额 desc
31 limit 100
销售额前100的云仓商品列表
 1 select
 2     a.product_id as ID,
 3     a.product_name  as 商品名称,
 4     a.product_info as 商品介绍,
 5     a.img as 商品主图,
 6     a.unit as 商品单位,
 7     a.source as 商品平台来源,
 8     a.category_name as 商品类别,
 9     a.brand_name as 商品品牌,
10     a.origin as 产地,
11     a.cost_price as 成本价,
12     a.sale_price as 售价,
13     a.market_price as 市场价,
14     a.activity_price as 活动价,
15     a.agreement_price as 协议价,
16     a.guide_price as 指导价,
17     a.sale as 销售数量,
18     a.stock as 总库存,
19     a.choose_count as 铺货人数,
20     a.activity_rate as 活动利润率,
21     a.min_profits as 最小利润,
22     a.max_profits as 最大利润,
23     a.discount as 折扣,
24     a.sale*a.sale_price as 单品销售额,
25     a.create_time as 时间
26 from
27     eb_echart_product as a
28 where source = 2
29 order by
30     单品销售额 desc
31 limit 100
销售额前100的京东商品列表
 1 select
 2     a.product_id as ID,
 3     a.product_name  as 商品名称,
 4     a.product_info as 商品介绍,
 5     a.img as 商品主图,
 6     a.unit as 商品单位,
 7     a.source as 商品平台来源,
 8     a.category_name as 商品类别,
 9     a.brand_name as 商品品牌,
10     a.origin as 产地,
11     a.cost_price as 成本价,
12     a.sale_price as 售价,
13     a.market_price as 市场价,
14     a.activity_price as 活动价,
15     a.agreement_price as 协议价,
16     a.guide_price as 指导价,
17     a.sale as 销售数量,
18     a.stock as 总库存,
19     a.choose_count as 铺货人数,
20     a.activity_rate as 活动利润率,
21     a.min_profits as 最小利润,
22     a.max_profits as 最大利润,
23     a.discount as 折扣,
24     a.sale*a.sale_price as 单品销售额,
25     a.create_time as 时间
26 from
27     eb_echart_product as a
28 where source = 6
29 order by
30     单品销售额 desc
31 limit 100
销售额前100的阿里商品列表
 1 select
 2     a.product_id as ID,
 3     a.product_name  as 商品名称,
 4     a.product_info as 商品介绍,
 5     a.img as 商品主图,
 6     a.unit as 商品单位,
 7     a.source as 商品平台来源,
 8     a.category_name as 商品类别,
 9     a.brand_name as 商品品牌,
10     a.origin as 产地,
11     a.cost_price as 成本价,
12     a.sale_price as 售价,
13     a.market_price as 市场价,
14     a.activity_price as 活动价,
15     a.agreement_price as 协议价,
16     a.guide_price as 指导价,
17     a.sale as 销售数量,
18     a.stock as 总库存,
19     a.choose_count as 铺货人数,
20     a.activity_rate as 活动利润率,
21     a.min_profits as 最小利润,
22     a.max_profits as 最大利润,
23     a.discount as 折扣,
24     a.sale*a.sale_price as 单品销售额,
25     a.create_time as 时间
26 from
27     eb_echart_product as a
28 where source = 7
29 order by
30     单品销售额 desc
31 limit 100
销售额前100的天猫商品列表

 

{
    "dv":1,
    "css":["/static/custom/template/css/comon0.css"],
    "js":["/static/custom/template/js/comon0.js"],
    "animate":{
        "0":{"dataLen":5,"interval":1000,"showtip":0},
        "1":{"dataLen":5,"interval":1000,"showtip":0},
        "2":{"dataLen":5,"interval":1000,"showtip":0},
        "3":{"dataLen":5,"interval":1000,"showtip":0},
        "4":{"dataLen":60,"interval":1000,"showtip":1},
        "5":{"dataLen":5,"interval":1000,"showtip":0},
        "6":{"dataLen":5,"interval":1000,"showtip":0},
        "7":{"dataLen":5,"interval":1000,"showtip":0},
        "8":{"dataLen":5,"interval":1000,"showtip":0},
        "9":{"dataLen":5,"interval":1000,"showtip":0},
        "10":{"dataLen":5,"interval":1000,"showtip":0},
        "11":{"dataLen":5,"interval":1000,"showtip":0},
        "12":{"dataLen":5,"interval":1000,"showtip":0},
        "13":{"dataLen":5,"interval":1000,"showtip":0}
    }
}
面板高级设置
<!--    ##0##.全网商品数据统计分析0241    -->
<div class="canvas" style="opacity: .2;z-index:-1;">
  <iframe frameborder="0" src="../../static/custom/template/js/index.html" scrolling="no" style="width: 100%;height: 100%;"></iframe>
</div>

<div class="loading" style="display: none;">
  <div class="loadbox"> <img src="../../static/custom/template/picture/loading.gif"> 页面加载中... </div>
</div>

<div class="head">
  <h1>全网商品数据统计分析</h1>
  <div class="weather"><span id="showTime">2021年8月26-13时31分46秒</span></div>
</div>

<div class="mainbox">
  <ul class="clearfix"> 
    <li>
      <div class="boxall" style="height: 3.2rem">
        <div class="allnav">
          <div class="sycm">
            <div style="border-bottom: 1px solid rgba(255,255,255,.1)"></div>
            <ul class="clearfix">
              <li>
                <div style="float:right; width: 100%; margin-top: 0rem;">
                    <div class="col-xs-12 col-md-12" style="padding:0% 0%;" >
                      <div style="height:50%;" id="container_{name}"></div>
                    </div>
                </div>
              </li>
<!--    #######    -->

                
<!--    ##1##.全网商品数据统计分析1235    -->
<li>
                <div style="float:right; width: 100%; margin-top: 0rem;">
                    <div class="col-xs-12 col-md-12" style="padding:0% 0%;" >
                      <div style="height:50%;" id="container_{name}"></div>
                    </div>
                </div>
              </li>
<!--    #######    -->

                
<!--    ##2##.全网商品数据统计分析2236    -->
<li>
                <div style="float:left; width: 100%; margin-top: 0rem;">
                    <div class="col-xs-12 col-md-12" style="padding:0% 0%;" >
                      <div style="height:50%;" id="container_{name}"></div>
                    </div>
                </div>
              </li>
            </ul>
                
            <div style="border-bottom: 1px solid rgba(255,255,255,.1)"></div>
            <ul class="clearfix">
<!--    #######    -->

                
<!--    ##3##.全网商品数据统计分析3237    -->
<li>
                <div style="float:right; width: 100%; margin-top: 0rem;">
                    <div class="col-xs-12 col-md-12" style="padding:0% 0%;" >
                      <div style="height:50%;" id="container_{name}"></div>
                    </div>
                </div>
              </li>
<!--    #######    -->

                
<!--    ##4##.全网商品数据统计分析4238    -->
<li>
                <div style="float:right; width: 100%; margin-top: 0rem;">
                    <div class="col-xs-12 col-md-12" style="padding:0% 0%;" >
                      <div style="height:50%;" id="container_{name}"></div>
                    </div>
                </div>
              </li>
<!--    #######    -->

                
<!--    ##5##.全网商品数据统计分析5239    -->
<li>
                <div style="float:left; width: 100%; margin-top: 0rem;">
                    <div class="col-xs-12 col-md-12" style="padding:0% 0%;" >
                      <div style="height:50%;" id="container_{name}"></div>
                    </div>
                </div>
              </li>
            </ul>
          </div>
        </div>
        <div class="boxfoot"></div>
      </div>
<!--    #######    -->

                
<!--    ##6##.全网商品数据统计分析6222    -->
<div class="boxall" style="height: 3.2rem">
        <div class="allnav">
          <div class="col-xs-12 col-md-12" style="padding:0.5% 0.5%;" >
            <div style="height:100%;" id="container_{name}"></div>
          </div>
        </div>
        <div class="boxfoot"></div>
      </div>
<!--    #######    -->

                
<!--    ##7##.全网商品数据统计分析7223    -->
<div class="boxall" style="height: 3.2rem">
        <div style="height:100%; width: 100%;">
          <div style="float:left; width: 33%; margin-top: .25rem;">
            <div class="col-xs-12 col-md-12" style="padding:0.5% 0.5%;" >
              <div style="height:100%;" id="container_{name}"></div>
            </div>
          </div>
<!--    #######    -->

                
<!--    ##8##.全网商品数据统计分析8224    -->
<div style="float:left; width: 33%; margin-top: .25rem;">
            <div class="col-xs-12 col-md-12" style="padding:0.5% 0.5%;" >
              <div style="height:100%;" id="container_{name}"></div>
            </div>
          </div>
<!--    #######    -->

                
<!--    ##9##.全网商品数据统计分析9225    -->
<div style="float:left; width: 33%;  margin-top: .25rem;">
            <div class="col-xs-12 col-md-12" style="padding:0.5% 0.5%;" >
              <div style="height:100%;" id="container_{name}"></div>
            </div>
          </div>
        </div>
        <div class="boxfoot"></div>
      </div>

    </li>
    <li>
      <div>
        <div class="barbox">
          <ul class="clearfix">
            <li class="pulll_left counter">29700万件</li>
            <li class="pulll_left counter">12954亿元</li>
          </ul>
        </div>
        <div class="barbox2">
          <ul class="clearfix">
            <li class="pulll_left">全网商品销售量</li>
            <li class="pulll_left">全网商品销售额</li>
          </ul>
        </div>
      </div>
<!--    #######    -->

                
<!--    ##10##.全网商品数据统计分析10226    -->
<div class="map">
        <div class="map1"><img src="../../static/custom/template/picture/lbx.png"></div>
        <div class="map2"><img src="../../static/custom/template/picture/jt.png"></div>
        <div class="map3"><img src="../../static/custom/template/picture/map.png"></div>
        <div><!-- class="map4"-->
          <div class="col-xs-12 col-md-12" style="padding:0.5% 0.5%;" >
            <div style="height:100%;" id="container_{name}"></div>
          </div>
        </div>
      </div>
    </li>
<!--    #######    -->

                
<!--    ##11##.全网商品数据统计分析11227    -->
<li>
      <div class="boxall" style="height: 3.2rem">
          <div class="allnav">
            <div class="col-xs-12 col-md-12" style="padding:0.5% 0.5%;" >
              <div style="height:100%;" id="container_{name}"></div>
            </div>
          </div>
          <div class="boxfoot"></div>
      </div>
<!--    #######    -->

                
<!--    ##12##.全网商品数据统计分析12228    -->
<div class="boxall" style="height: 3.2rem">
        <div class="allnav">
          <div class="col-xs-12 col-md-12" style="padding:0.5% 0.5%;" >
            <div style="height:100%;" id="container_{name}"></div>
          </div>
        </div>
        <div class="boxfoot"></div>
      </div>
<!--    #######    -->

                
<!--    ##13##.全网商品数据统计分析13232    -->
<div class="boxall" style="height: 3.2rem">
        <div>
          <div class="col-xs-12 col-md-12" style="padding:0.5% 0.5%;" >
              <div style="height:100%;" id="container_{name}"></div>
            </div>
        </div>
        <div class="boxfoot"></div>
      </div>
    </li>
    <div class="back"></div>
  </ul>
</div>
<!--    #######    -->

                
仪表盘布局代码一
let dataset = __dataset__; //传入dataset
let legend_label = ds_rowname(dataset) //可选, 自动获取legend
let xlabel = dataset[0].slice(1) //x轴的标签列

var labelData = [];
var labelData1 = [];
for (var i = 0; i < dataset[1][2]; ++i) {
    labelData.push({
        value: 1,
        name: i,
        itemStyle: {
            normal: {
                color: 'rgba(0,209,228,0)',
            }
        }
    });
}
for (var i = 0; i < labelData.length; ++i) {
    if (labelData[i].name < dataset[1][1]) {
        labelData[i].itemStyle = {
            normal: {
                color: new echarts.graphic.LinearGradient(
                    0, 1, 0, 0,
                    [{
                            offset: 0,
                            color: '#6dfbff'
                        },
                        {
                            offset: 1,
                            color: '#02aeff'
                        }
                    ]
                )
            },

        }
    }
}
for (var i = 0; i < dataset[1][2]; ++i) {
    labelData1.push({
        value: 1,
        name: i,
        itemStyle: {
            normal: {
                color: 'rgba(0,209,228,0)',
            }
        }
    });
}
for (var i = 0; i < labelData1.length; ++i) {
    if (labelData1[i].name < dataset[1][2]) {
        labelData1[i].itemStyle = {
            normal: {
                color: '#464451',
            },

        }
    }
}

function Pie() {
    let dataArr = [];
    for (var i = 0; i < dataset[1][1]; i++) {
        if (i % 10 === 0) {
            dataArr.push({
                name: (i + 1).toString(),
                value: 30,
                itemStyle: {
                    normal: {
                        color: "rgba(0,255,255,1)",
                        borderWidth: 0,
                        borderColor: "rgba(0,0,0,0)",
                    }
                }
            })
        } else {
            dataArr.push({
                name: (i + 1).toString(),
                value: dataset[1][2],
                itemStyle: {
                    normal: {
                        color: "rgba(0,0,0,0)",
                        borderWidth: 0,
                        borderColor: "rgba(0,0,0,0)"
                    }
                }
            })
        }
    }
    return dataArr
}

function Pie1() {
    let dataArr = [];
    for (var i = 0; i < dataset[1][1]; i++) {
        if (i % 5 === 0) {
            dataArr.push({
                name: (i + 1).toString(),
                value: dataset[1][1],
                itemStyle: {
                    normal: {
                        color: "rgba(0,255,255,1)",
                        borderWidth: 0,
                        borderColor: "rgba(0,0,0,0)"
                    }
                }
            })
        } else {
            dataArr.push({
                name: (i + 1).toString(),
                value: dataset[1][1],
                itemStyle: {
                    normal: {
                        color: "rgba(0,0,0,0)",
                        borderWidth: 0,
                        borderColor: "rgba(0,0,0,0)"
                    }
                }
            })
        }
    }
    return dataArr
}

function Pie2() {
    let dataArr = [];
    for (var i = 0; i < dataset[1][1]; i++) {
        if (i % 5 === 0) {
            dataArr.push({
                name: (i + 1).toString(),
                value: dataset[1][1],
                itemStyle: {
                    normal: {
                        color: "rgba(0,255,255,.3)",
                        borderWidth: 0,
                        borderColor: "rgba(0,0,0,0)"
                    }
                }
            })
        } else {
            dataArr.push({
                name: (i + 1).toString(),
                value: dataset[1][1],
                itemStyle: {
                    normal: {
                        color: "rgba(0,0,0,0)",
                        borderWidth: 0,
                        borderColor: "rgba(0,0,0,0)"
                    }
                }
            })
        }
    }
    return dataArr
}

function Pie3() {
    let dataArr = [];
    for (var i = 0; i < dataset[1][1]; i++) {
        if (i % 10 === 0) {
            dataArr.push({
                name: (i + 1).toString(),
                value: dataset[1][1],
                itemStyle: {
                    normal: {
                        color: "rgba(0,255,255,.5)",
                        borderWidth: 0,
                        borderColor: "rgba(0,0,0,0)"
                    }
                }
            })
        } else {
            dataArr.push({
                name: (i + 1).toString(),
                value: dataset[1][1],
                itemStyle: {
                    normal: {
                        color: "rgba(0,0,0,0)",
                        borderWidth: 0,
                        borderColor: "rgba(0,0,0,0)"
                    }
                }
            })
        }
    }
    return dataArr
}
option__name__= {
    title: [{
        text: dataset[1][1]+'款',//*100/dataset[1][2]+'%',
        x: '45%',
        y: '37%',
        textAlign: 'center',
        textStyle: {
            fontSize: '18',
            fontWeight: '100',
            color: '#79ffff',
            textAlign: 'center',
        },
    }, {
        //text: dataset[0][1],
        left: '50%',
        top: '52%',
        textAlign: 'center',
        textStyle: {
            fontSize: '18',
            fontWeight: '100',
            color: '#5c5a68',
            textAlign: 'center',
        },
    }, {
        //text: dataset[1][1]*100/dataset[1][2]+'%',//dataset[0][2],
        left: '50%',
        top: '62%',
        textAlign: 'center',
        textStyle: {
            fontSize: '14',
            fontWeight: '400',
            color: '#484556',
            textAlign: 'center',
        },
    }, ],
    polar: {
        radius: ['51%', '87%'],
        center: ['50%', '50%'],
    },
    angleAxis: {
        max: dataset[1][2],
        show: false,
        startAngle: 0,
    },
    radiusAxis: {
        type: 'category',
        show: true,
        axisLabel: {
            show: false,
        },
        axisLine: {
            show: false,

        },
        axisTick: {
            show: false
        },
    },
    series: [{
            name: '',
            type: 'bar',
            roundCap: true,
            barWidth: 60,
            showBackground: true,
            backgroundStyle: {
                color: '#464451',
            },
            data: [dataset[1][1]],
            coordinateSystem: 'polar',
            itemStyle: {
                normal: {
                    color: new echarts.graphic.LinearGradient(1, 0, 0, 0, [{
                        offset: 0,
                        color: '#0ff'
                    }, {
                        offset: 1,
                        color: '#02aeff'
                    }]),
                }
            }
        },
        {
            hoverAnimation: false,
            type: 'pie',
            z: 2,
            data: labelData,
            radius: ['52%', '99%'],
            zlevel: -2,
            itemStyle: {
                normal: {
                    borderColor: '#1f1e26',
                    borderWidth: 4,
                }
            },
            label: {
                normal: {
                    position: 'inside',
                    show: false,
                }
            },
        },
        {
            hoverAnimation: false,
            type: 'pie',
            z: 1,
            data: labelData1,
            radius: ['52%', '99%'],
            zlevel: -2,
            itemStyle: {
                normal: {
                    borderColor: '#1f1e26',
                    borderWidth: 4,
                }
            },
            label: {
                normal: {
                    position: 'inside',
                    show: false,
                }
            },
        },
        {
            type: 'pie',
            radius: ['42%', '83%'],
            center: ['50%', '50%'],
            data: [{
                    hoverOffset: 1,
                    value: dataset[1][1],
                    name: '',
                    itemStyle: {
                        color: '#ff6189',
                    },
                    label: {
                        show: false
                    },
                    labelLine: {
                        normal: {
                            smooth: true,
                            lineStyle: {
                                width: 0
                            }
                        }
                    },
                    hoverAnimation: false,
                },
                {
                    label: {
                        show: false
                    },
                    labelLine: {
                        normal: {
                            smooth: true,
                            lineStyle: {
                                width: 0
                            }
                        }
                    },
                    value: dataset[1][2] - dataset[1][1],
                    hoverAnimation: false,
                    itemStyle: {
                        color: '#3c3a48',
                    },
                }
            ]
        },

        {
            type: 'pie',
            zlevel: 0,
            silent: true,
            radius: ['67%', '95.5%'],
            z: 1,
            label: {
                normal: {
                    show: false
                },
            },
            labelLine: {
                normal: {
                    show: false
                }
            },
            data: Pie()
        },
        {
            type: 'pie',
            zlevel: 0,
            silent: true,
            startAngle: -150,
            radius: ['65%', '93.5%'],
            z: 1,
            label: {
                normal: {
                    show: false
                },
            },
            labelLine: {
                normal: {
                    show: false
                }
            },
            data: Pie3()
        },
        {
            type: 'pie',
            zlevel: 0,
            silent: true,
            startAngle: -140,
            radius: ['68%', '96.5%'],
            z: 1,
            label: {
                normal: {
                    show: false
                },
            },
            labelLine: {
                normal: {
                    show: false
                }
            },
            data: Pie()
        },
        {
            type: 'pie',
            zlevel: 0,
            silent: true,
            radius: ['61%', '90%'],
            z: 1,
            label: {
                normal: {
                    show: false
                },
            },
            labelLine: {
                normal: {
                    show: false
                }
            },
            data: Pie1()
        },
        {
            type: 'pie',
            zlevel: 0,
            silent: true,
            startAngle: -140,
            radius: ['61%', '90%'],
            z: 1,
            label: {
                normal: {
                    show: false
                },
            },
            labelLine: {
                normal: {
                    show: false
                }
            },
            data: Pie2()
        },
        {
            type: 'pie',
            zlevel: 0,
            silent: true,
            startAngle: -147.5,
            radius: ['61%', '90%'],
            z: 1,
            label: {
                normal: {
                    show: false
                },
            },
            labelLine: {
                normal: {
                    show: false
                }
            },
            data: Pie2()
        },

    ]
};
charts.push(myChart__name__);
多层圆形进度图形
//select 指标名, 值

var dataset = __dataset__; //传入dataset
legend_label = ds_rowname(dataset) //可选, 自动获取legend
var series =[];

for (var i=1;i<dataset.length;i++){
    series.push({name: dataset[i][0],value: dataset[i][1]})
}

option__name__= {
    //指定图列的顺序颜色
    //color : ['#b3c7bc','#cdd6bc','#d4713b'],
    title : {
        text: '全网品牌分类'+dataset[0][1],
        subtext:'数量(个)',
        x: "center", //水平坐标,默认为左侧center|left|right| {number}(px)
        y: "5%", //top|bottom|center|{number}(y坐标,单位px)
        //字体格式
        textStyle: {
            align: 'center',
            color: '#fff',
            fontSize: 15,
       },
    },
    
    tooltip : {
        trigger: 'item',
        formatter: "{a} <br/>{b} : {c}个商品 ({d}%)",
    },
    
    legend: {
        //type: 'scroll',
        //orient: 'vertical',
        left: '55%',
        right: '15%',
        top: '35%',
        bottom: '0%',
        selected: {
            // 选中'系列1'
            '来源': true,
        },
        textStyle: {
            color: '#fff'// 图例文字颜色
        }

    },

    series : [
        {
            name: dataset[0][0],
            type: 'pie',
            radius : '50%',
            center: ['25%', '70%'],
            itemStyle: {
                emphasis: {
                    shadowBlur: 10,
                    shadowOffsetX: 0,
                    shadowColor: 'rgba(0, 0, 0, 0.5)'
                }
            },
            data:series
        }
    ]
};
charts.push(myChart__name__);
饼形图一
//select 指标名, 值

var dataset = __dataset__; //传入dataset
legend_label = ds_rowname(dataset) //可选, 自动获取legend
var series =[];
for (var i=1;i<dataset.length;i++){
    series.push({name: dataset[i][0],value: dataset[i][1]})
}

option__name__= {
    title : {
        text: '京东分类商品'+dataset[0][1],
        subtext: ' ',
        x:'center',
        //字体格式
        textStyle: {
            align: 'center',
            color: '#fff',
            fontSize: 15,
       },
    },
    tooltip : {
        trigger: 'item',
        formatter: "{a} <br/>{b} : {c} ({d}%)"
    },
    legend: {
        //type: 'scroll',
        //orient: 'vertical',
        //right: 10,
        //top: 20,
        bottom: 0,
        selected: 1,
        textStyle: {
            color: '#fff'// 图例文字颜色
        }
    },
    series: [
        {
            name: dataset[0][0],
            type: 'pie',
            radius: ['60%', '80%'],
            center: ['50%', '40%'],
            avoidLabelOverlap: false,
            itemStyle: {
                borderRadius: 10,
                borderColor: '#fff',
                borderWidth: 2
            },
            label: {
                show: false,
                position: 'center'
            },
            emphasis: {
                label: {
                    show: true,
                    fontSize: '15',
                    fontWeight: 'bold'
                }
            },
            labelLine: {
                show: false
            },
            data:series
        }
    ]

};
charts.push(myChart__name__);
饼形图二
//select 指标名, 值

var dataset = __dataset__; //传入dataset
legend_label = ds_rowname(dataset) //可选, 自动获取legend
var series =[];
for (var i=1;i<dataset.length;i++){
    series.push({name: dataset[i][0],value: dataset[i][1]})
}

option__name__= {
    title : {
        text: '全网分类商品'+dataset[0][1],
        //subtext: ' ',
        x:'center',
        y:'97%',
        //字体格式
        textStyle: {
            align: 'center',
            color: '#fff',
            fontSize: 15,
       },
    },
    tooltip : {
        trigger: 'item',
        formatter: "{a} <br/>{b} : {c} ({d}%)"
    },

    series: [
        {
            name: dataset[0][0],
            type: 'pie',
            radius: ['75%', '90%'],
            center: ['50.4%', '50.4%'],
            avoidLabelOverlap: false,
            itemStyle: {
                borderRadius: 10,
                borderColor: '#fff',
                borderWidth: 2
            },
            label: {
                show: false,
                position: 'center'
            },
            emphasis: {
                label: {
                    show: true,
                    fontSize: '30',//60
                    fontWeight: 'bolder',
                    color:'#fff'
                }
            },
            labelLine: {
                show: false
            },
            data:series
        }
    ]

};
charts.push(myChart__name__);
饼形图三
//select 指标名, 值

var dataset = __dataset__; //传入dataset
legend_label = ds_rowname(dataset) //可选, 自动获取legend
var series =[];

for (var i=1;i<dataset.length;i++){
    series.push({name: dataset[i][0],value: dataset[i][1]})
}

option__name__= {
    //指定图列的顺序颜色
    //color : ['#b3c7bc','#cdd6bc','#d4713b'],
    title : {
        text: '商品'+dataset[0][1],
        subtext:'金额(元)',
        x: "center", //水平坐标,默认为左侧center|left|right| {number}(px)
        y: "5%", //top|bottom|center|{number}(y坐标,单位px)
        //字体格式
        textStyle: {
            align: 'center',
            color: '#fff',
            fontSize: 15,
       },
    },
    
    tooltip : {
        trigger: 'item',
        formatter: "{a} <br/>{b} : {c}个商品 ({d}%)",
    },
    
    legend: {
        type: 'scroll',
        orient: 'vertical',
        right: '15%',
        top: '50%',
        bottom: 0,
        selected: {
            // 选中'系列1'
            '来源': true,
        },
        textStyle: {
            color: '#fff'// 图例文字颜色
        }

    },

    series : [
        {
            name: dataset[0][0],
            type: 'pie',
            radius : '45%',
            center: ['35%', '75%'],
            itemStyle: {
                emphasis: {
                    shadowBlur: 10,
                    shadowOffsetX: 0,
                    shadowColor: 'rgba(0, 0, 0, 0.5)'
                }
            },
            data:series
        }
    ]
};
charts.push(myChart__name__);
饼形图四
//select 指标名, 值

var dataset = __dataset__; //传入dataset
legend_label = ds_rowname(dataset) //可选, 自动获取legend
var series =[];

for (var i=1;i<dataset.length;i++){
    series.push({name: dataset[i][0],value: dataset[i][1]})
}

option__name__= {
    //指定图列的顺序颜色
    //color : ['#b3c7bc','#cdd6bc','#d4713b'],
    title : {
        text: '商品'+dataset[0][1],
        subtext:'金额(元)',
        x: "center", //水平坐标,默认为左侧center|left|right| {number}(px)
        y: "5%", //top|bottom|center|{number}(y坐标,单位px)
        //字体格式
        textStyle: {
            align: 'center',
            color: '#fff',
            fontSize: 15,
       },
    },
    
    tooltip : {
        trigger: 'item',
        formatter: "{a} <br/>{b} : {c}个商品 ({d}%)",
    },
    
    legend: {
        type: 'scroll',
        orient: 'vertical',
        right: '15%',
        top: '50%',
        bottom: 0,
        selected: {
            // 选中'系列1'
            '来源': true,
        },
        textStyle: {
            color: '#fff'// 图例文字颜色
        }

    },

    series : [
        {
            name: dataset[0][0],
            type: 'pie',
            radius : '45%',
            center: ['35%', '75%'],
            itemStyle: {
                emphasis: {
                    shadowBlur: 10,
                    shadowOffsetX: 0,
                    shadowColor: 'rgba(0, 0, 0, 0.5)'
                }
            },
            data:series
        }
    ]
};
charts.push(myChart__name__);
饼形图五

 

posted @ 2021-08-26 10:03  huidaoli  阅读(391)  评论(0)    收藏  举报