package com.bjsxt.data
import java.io.PrintWriter
import org.apache.log4j.{ Level, Logger }
import org.apache.spark.mllib.classification.{ LogisticRegressionWithLBFGS, LogisticRegressionModel, LogisticRegressionWithSGD }
import org.apache.spark.mllib.linalg.SparseVector
import org.apache.spark.mllib.optimization.SquaredL2Updater
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.util.MLUtils
import org.apache.spark.rdd.RDD
import org.apache.spark.{ SparkContext, SparkConf }
import scala.collection.Map
/**
* Created by root on 2016/5/12 0012.
*/
class Recommonder {
}
object Recommonder {
def main(args: Array[String]) {
Logger.getLogger("org.apache.spark").setLevel(Level.ERROR)
val conf = new SparkConf().setAppName("recom").setMaster("local[*]")
val sc = new SparkContext(conf)
//加载数据,用\t分隔开
/*
* -1 Item.id,hitop_id85:1;Item.screen,screen2:1;
* Item.name,ch_name44:1;All,0:1;Item.author,author6:1;
* Item.sversion,sversion5:1;Item.network,x:1;Item.dgner,designer1:1;
* Item.icount,5:1;Item.stars,6.91:1;Item.comNum,11:1;
* Item.font,font16:1;Item.price,7210:1;Item.fsize,2:1;
* Item.ischarge,0:1;Item.downNum,50:1;
* User.Item*Item,hitop_id56*hitop_id85:1;User.phone*Item,device_name718*hitop_id85:1;
* User.pay*Item.price,pay_ability2*7210:1
*/
val data: RDD[Array[String]] = sc.textFile("f:/result").map(_.split("\t"))
println("data.getNumPartitions:" + data.getNumPartitions)
//得到第一列的值,也就是label
/**
* -1 Item.id,hitop_id74:1;Item.screen,screen1:1
* -1 Item.id,hitop_id74:1;Item.screen,screen1:1;Item.name,ch_name18:1;All,0:1
*/
val label: RDD[String] = data.map(_(0))
println(label.first());
//sample这个RDD中保存的是每一条记录的特征名
//Item.id,hitop_id74
val sample: RDD[Array[String]] = data.map(_(1)).map(x => {
val arr: Array[String] = x.split(";").map(_.split(":")(0))
arr
})
println(sample.first());
//将所有元素压平,得到的是所有分特征,然后去重,最后索引化,也就是加上下标,最后转成map是为了后面查询用
//Item.id,hitop_id74 0
//得到稀疏向量
//sqmple Item.id,hitop_id74
// 0
val sam: RDD[SparseVector] = sample.map(sampleFeatures => {
//index中保存的是,未来在构建训练集时,下面填1的索引号集合
val index: Array[Int] = sampleFeatures.map(feature => {
//get出来的元素程序认定可能为空,做一个类型匹配
val rs: Long = dict.get(feature).get
//非零元素下标,转int符合SparseVector的构造函数
rs.toInt
})
//SparseVector创建一个向量
new SparseVector(dict.size, index, Array.fill(index.length)(1.0))
})
//mllib中的逻辑回归只认1.0和0.0,这里进行一个匹配转换
val la: RDD[LabeledPoint] = label.map(x => {
x match {
case "-1" => 0.0
case "1" => 1.0
}
//标签组合向量得到labelPoint
}).zip(sam).map(x => new LabeledPoint(x._1, x._2))
// val splited = la.randomSplit(Array(0.1, 0.9), 10)
//
// la.sample(true, 0.002).saveAsTextFile("trainSet")
// la.sample(true, 0.001).saveAsTextFile("testSet")
// println("done")
//逻辑回归训练,两个参数,迭代次数和步长,生产常用调整参数
val lr = new LogisticRegressionWithSGD()
// 设置W0截距
lr.setIntercept(true)
// // 设置正则化
// lr.optimizer.setUpdater(new SquaredL2Updater)
// // 看中W模型推广能力的权重
// lr.optimizer.setRegParam(0.4)
// 最大迭代次数
lr.optimizer.setNumIterations(10)
// 设置梯度下降的步长,学习率
lr.optimizer.setStepSize(0.1)
val model: LogisticRegressionModel = lr.run(la)
//模型结果权重
val weights: Array[Double] = model.weights.toArray
//将map反转,weights相应下标的权重对应map里面相应下标的特征名
val map: Map[Long, String] = dict.map(_.swap)
//模型保存
// LogisticRegressionModel.load()
// model.save()
//输出
val pw = new PrintWriter("./model");
//遍历
for(i<- 0 until weights.length){
//通过map得到每个下标相应的特征名
val featureName = map.get(i)match {
case Some(x) => x
case None => ""
}
//特征名对应相应的权重
val str = featureName+"\t" + weights(i)
pw.write(str)
pw.println()
}
pw.flush()
pw.close()
}
}