package com.bjsxt.sparkstreaming;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Map;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.storage.StorageLevel;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaPairReceiverInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka.KafkaUtils;
import scala.Tuple2;
/**
* receiver 模式并行度是由blockInterval决定的
* @author root
*
*/
public class SparkStreamingOnKafkaReceiver {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setAppName("SparkStreamingOnKafkaReceiver")
.setMaster("local[2]");
//开启预写日志 WAL机制
conf.set("spark.streaming.receiver.writeAheadLog.enable","true");
JavaStreamingContext jsc = new JavaStreamingContext(conf, Durations.seconds(5));
jsc.checkpoint("./receivedata");
Map<String, Integer> topicConsumerConcurrency = new HashMap<String, Integer>();
/**
* 设置读取的topic和接受数据的线程数
*/
topicConsumerConcurrency.put("t0502", 1);//put(要读的topic,线程数<如果有几个parititon,就可以写几个>)
/**
* 第一个参数是StreamingContext
* 第二个参数是ZooKeeper集群信息(接受Kafka数据的时候会从Zookeeper中获得Offset等元数据信息)
* 第三个参数是Consumer Group 消费者组
* 第四个参数是消费的Topic以及并发读取Topic中Partition的线程数
*
* 注意:
* KafkaUtils.createStream 使用五个参数的方法,设置receiver的存储级别
*/
JavaPairReceiverInputDStream<String,String> lines = KafkaUtils.createStream(
jsc,
"node3:2181,node4:2181,node5:2181",
"MyFirstConsumerGroup", //名称:组的名称 ,组名
topicConsumerConcurrency);
JavaDStream<String> words = lines.flatMap(new FlatMapFunction<Tuple2<String,String>, String>() {
private static final long serialVersionUID = 1L;
public Iterable<String> call(Tuple2<String,String> tuple) throws Exception {
System.out.println("key = "+tuple._1);
System.out.println("value = "+tuple._2);
return Arrays.asList(tuple._2.split("\t"));
}
});
JavaPairDStream<String, Integer> pairs = words.mapToPair(new PairFunction<String, String, Integer>() {
private static final long serialVersionUID = 1L;
public Tuple2<String, Integer> call(String word) throws Exception {
return new Tuple2<String, Integer>(word, 1);
}
});
JavaPairDStream<String, Integer> wordsCount = pairs.reduceByKey(new Function2<Integer, Integer, Integer>() {
//对相同的Key,进行Value的累计(包括Local和Reducer级别同时Reduce)
private static final long serialVersionUID = 1L;
public Integer call(Integer v1, Integer v2) throws Exception {
return v1 + v2;
}
});
wordsCount.print(100);
jsc.start();
jsc.awaitTermination();
jsc.close();
}
}