随笔分类 - 机器学习
摘要:"1. 集成学习(Ensemble Learning)原理" "2. 集成学习(Ensemble Learning)Bagging" "3. 集成学习(Ensemble Learning)随机森林(Random Forest)" "4. 集成学习(Ensemble Learning)Adaboost
阅读全文
摘要:"1. 集成学习(Ensemble Learning)原理" "2. 集成学习(Ensemble Learning)Bagging" "3. 集成学习(Ensemble Learning)随机森林(Random Forest)" "4. 集成学习(Ensemble Learning)Adaboost
阅读全文
摘要:"1. 集成学习(Ensemble Learning)原理" "2. 集成学习(Ensemble Learning)Bagging" "3. 集成学习(Ensemble Learning)随机森林(Random Forest)" "4. 集成学习(Ensemble Learning)Adaboost
阅读全文
摘要:"1. 集成学习(Ensemble Learning)原理" "2. 集成学习(Ensemble Learning)Bagging" "3. 集成学习(Ensemble Learning)随机森林(Random Forest)" "4. 集成学习(Ensemble Learning)Adaboost
阅读全文
摘要:"1. 集成学习(Ensemble Learning)原理" "2. 集成学习(Ensemble Learning)Bagging" "3. 集成学习(Ensemble Learning)随机森林(Random Forest)" "4. 集成学习(Ensemble Learning)Adaboost
阅读全文
摘要:"1. 特征工程之特征预处理" "2. 特征工程之特征选择" 1. 前言 当数据预处理完成后,我们需要选择有意义的特征输入机器学习的算法和模型进行训练。 2. 特征选择的方法 通常来说,从两个方面考虑来选择特征: + 特征是否发散:如果一个特征不发散,例如方差接近于0,也就是说样本在这个特征上基本上
阅读全文
摘要:"1. 特征工程之特征预处理" "2. 特征工程之特征选择" 1. 前言 “数据决定了机器学习的上限,而算法只是尽可能逼近这个上限” ,这里的数据指的就是经过特征工程得到的数据。特征工程指的是把原始数据转变为模型的训练数据的过程,它的目的就是获取更好的训练数据特征,使得机器学习模型逼近这个上限。特征
阅读全文
摘要:"1. 集成学习(Ensemble Learning)原理" "2. 集成学习(Ensemble Learning)Bagging" "3. 集成学习(Ensemble Learning)随机森林(Random Forest)" "4. 集成学习(Ensemble Learning)Adaboost
阅读全文
摘要:"1. 集成学习(Ensemble Learning)原理" "2. 集成学习(Ensemble Learning)Bagging" "3. 集成学习(Ensemble Learning)随机森林(Random Forest)" "4. 集成学习(Ensemble Learning)Adaboost
阅读全文
摘要:1. 前言 在机器学习的分类问题领域中,有两个平分秋色的算法,就是 "逻辑回归" 和 "支持向量机" ,这两个算法个有千秋,在不同的问题中有不同的表现效果,下面我们就对它们的区别和联系做一个简单的总结。 2. LR和SVM的联系 1. 都是监督的分类算法。 2. 都是线性分类方法 (不考虑核函数时)
阅读全文
摘要:"1. 感知机原理(Perceptron)" "2. 感知机(Perceptron)基本形式和对偶形式实现" "3. 支持向量机(SVM)拉格朗日对偶性(KKT)" "4. 支持向量机(SVM)原理" "5. 支持向量机(SVM)软间隔" "6. 支持向量机(SVM)核函数" 1. 前言 之前介绍了
阅读全文
摘要:1. 前言 在机器学习中,不同的问题对应了不同的损失函数,不同的损失函数也直接会影响到收敛的快慢和结果的好坏,下面就从不同的损失函数的角度进行一下梳理。 2. 0 1损失函数 0 1损失是指,预测值和目标值不相等为1,否则为0 3. log对数损失函数 "逻辑回归" 的损失函数就是对数损失函数,在逻
阅读全文
摘要:"1. 感知机原理(Perceptron)" "2. 感知机(Perceptron)基本形式和对偶形式实现" "3. 支持向量机(SVM)拉格朗日对偶性(KKT)" "4. 支持向量机(SVM)原理" "5. 支持向量机(SVM)软间隔" "6. 支持向量机(SVM)核函数" 1. 前言 在前一篇
阅读全文
摘要:"1. 感知机原理(Perceptron)" "2. 感知机(Perceptron)基本形式和对偶形式实现" "3. 支持向量机(SVM)拉格朗日对偶性(KKT)" "4. 支持向量机(SVM)原理" "5. 支持向量机(SVM)软间隔" "6. 支持向量机(SVM)核函数" 1. 前言 在我没有学
阅读全文
摘要:1. 前言 今天我们介绍机器学习里面大名鼎鼎的逻辑回归。不要看他的名字里面有“回归”,但是它其实是个分类算法。它取名逻辑回归主要是因为是从线性回归转变而来的。 2.逻辑回归原理 2.1 逻辑回归的由来 不知道读者还记不记得在线性回归中有一节 "广义线性回归" 介绍了在$Y=Xθ$的基础上对$Y$进行
阅读全文
摘要:1. 前言 今天我们聊一聊机器学习和深度学习里面都至关重要的一个环节,优化损失函数。我们知道一个模型只有损失函数收敛到了一定的值,才有可能会有好的结果,降低损失方式的工作就是优化方法需要做的事。下面会讨论一些常用的优化方法:梯度下降法家族、牛顿法、拟牛顿法、共轭梯度法、Momentum、Nester
阅读全文
摘要:1. 前言 线性回归形式简单、易于建模,但却蕴涵着机器学习中一些重要的基本思想。许多功能更为强大的非线性模型(nonlinear model)可在线性模型的基础上通过引入层级结构或高维映射而得。此外,由于线性回归的解$\theta$直观表达了各属性在预测中的重要性,因此线性回归有很好的可解释性。 2
阅读全文
摘要:"1. 决策树(Decision Tree) 决策树原理" "2. 决策树(Decision Tree) ID3、C4.5、CART比较" 1. 前言 上文 "决策树(Decision Tree)1 决策树原理" 介绍了决策树原理和算法,并且涉及了ID3,C4.5,CART3个决策树算法。现在大部分
阅读全文
摘要:"1. 决策树(Decision Tree) 决策树原理" "2. 决策树(Decision Tree) ID3、C4.5、CART比较" 1. 前言 决策树是一种 基本的分类和回归方法 。决策树呈树形结构,在分类问题中,表示基于特征对实例进行分类的过程。它可以认为是if then规则的集合,也可以
阅读全文
摘要:1. 前言 贝叶斯学派很古老,但是从诞生到一百年前一直不是主流。主流是频率学派。频率学派的权威皮尔逊和费歇尔都对贝叶斯学派不屑一顾,但是贝叶斯学派硬是凭借在现代特定领域的出色应用表现为自己赢得了半壁江山。 贝叶斯学派的思想可以概括为 先验概率+数据=后验概率 。也就是说我们在实际问题中需要得到的后验
阅读全文

浙公网安备 33010602011771号