本文将介绍如何在Spark上使用Scala编写快速导入数据到Hbase中的方法。这里将介绍两种方式:第一种使用Put普通的方法来倒数;第二种使用Bulk Load API。
使用org.apache.hadoop.hbase.client.Put来写数据
使用 org.apache.hadoop.hbase.client.Put 将数据一条一条写入Hbase中,但是和Bulk加载相比效率低下,仅仅作为对比。
import org.apache.spark._import org.apache.spark.rdd.NewHadoopRDDimport org.apache.hadoop.hbase.{HBaseConfiguration, HTableDescriptor}import org.apache.hadoop.hbase.client.HBaseAdminimport org.apache.hadoop.hbase.mapreduce.TableInputFormatimport org.apache.hadoop.fs.Path;import org.apache.hadoop.hbase.HColumnDescriptorimport org.apache.hadoop.hbase.util.Bytesimport org.apache.hadoop.hbase.client.Put;import org.apache.hadoop.hbase.client.HTable; val conf = HBaseConfiguration.create()val tableName = "/iteblog"conf.set(TableInputFormat.INPUT_TABLE, tableName) val myTable = new HTable(conf, tableName);var p = new Put();p = new Put(new String("row999").getBytes());p.add("cf".getBytes(), "column_name".getBytes(), new String("value999").getBytes());myTable.put(p);myTable.flushCommits(); |
批量导数据到Hbase
批量导数据到Hbase又可以分为两种:(1)、生成Hfiles,然后批量导数据;
(2)、直接将数据批量导入到Hbase中。
批量将Hfiles导入Hbase
现在我们来介绍如何批量将数据写入到Hbase中,主要分为两步:
(1)、先生成Hfiles;
(2)、使用 org.apache.hadoop.hbase.mapreduce.LoadIncrementalHFiles 将事先生成Hfiles导入到Hbase中。
实现的代码如下:
import org.apache.spark._import org.apache.spark.rdd.NewHadoopRDDimport org.apache.hadoop.hbase.{HBaseConfiguration, HTableDescriptor}import org.apache.hadoop.hbase.client.HBaseAdminimport org.apache.hadoop.hbase.mapreduce.TableInputFormatimport org.apache.hadoop.fs.Path;import org.apache.hadoop.hbase.HColumnDescriptorimport org.apache.hadoop.hbase.util.Bytesimport org.apache.hadoop.hbase.client.Put;import org.apache.hadoop.hbase.client.HTable;import org.apache.hadoop.hbase.mapred.TableOutputFormatimport org.apache.hadoop.mapred.JobConfimport org.apache.hadoop.hbase.io.ImmutableBytesWritableimport org.apache.hadoop.mapreduce.Jobimport org.apache.hadoop.mapreduce.lib.input.FileInputFormatimport org.apache.hadoop.mapreduce.lib.output.FileOutputFormatimport org.apache.hadoop.hbase.KeyValueimport org.apache.hadoop.hbase.mapreduce.HFileOutputFormatimport org.apache.hadoop.hbase.mapreduce.LoadIncrementalHFiles val conf = HBaseConfiguration.create()val tableName = "iteblog"val table = new HTable(conf, tableName) conf.set(TableOutputFormat.OUTPUT_TABLE, tableName)val job = Job.getInstance(conf)job.setMapOutputKeyClass (classOf[ImmutableBytesWritable])job.setMapOutputValueClass (classOf[KeyValue])HFileOutputFormat.configureIncrementalLoad (job, table) // Generate 10 sample data:val num = sc.parallelize(1 to 10)val rdd = num.map(x=>{ val kv: KeyValue = new KeyValue(Bytes.toBytes(x), "cf".getBytes(), "c1".getBytes(), "value_xxx".getBytes() ) (new ImmutableBytesWritable(Bytes.toBytes(x)), kv)}) // Save Hfiles on HDFS rdd.saveAsNewAPIHadoopFile("/tmp/iteblog", classOf[ImmutableBytesWritable], classOf[KeyValue], classOf[HFileOutputFormat], conf) //Bulk load Hfiles to Hbaseval bulkLoader = new LoadIncrementalHFiles(conf)bulkLoader.doBulkLoad(new Path("/tmp/iteblog"), table) |
运行完上面的代码之后,我们可以看到Hbase中的iteblog表已经生成了10条数据,如下:
hbase(main):020:0> scan 'iteblog'ROW COLUMN+CELL \x00\x00\x00\x01 column=cf:c1, timestamp=1425128075586, value=value_xxx \x00\x00\x00\x02 column=cf:c1, timestamp=1425128075586, value=value_xxx \x00\x00\x00\x03 column=cf:c1, timestamp=1425128075586, value=value_xxx \x00\x00\x00\x04 column=cf:c1, timestamp=1425128075586, value=value_xxx \x00\x00\x00\x05 column=cf:c1, timestamp=1425128075586, value=value_xxx \x00\x00\x00\x06 column=cf:c1, timestamp=1425128075675, value=value_xxx \x00\x00\x00\x07 column=cf:c1, timestamp=1425128075675, value=value_xxx \x00\x00\x00\x08 column=cf:c1, timestamp=1425128075675, value=value_xxx \x00\x00\x00\x09 column=cf:c1, timestamp=1425128075675, value=value_xxx \x00\x00\x00\x0A column=cf:c1, timestamp=1425128075675, value=value_xxx |
直接Bulk Load数据到Hbase
这种方法不需要事先在HDFS上生成Hfiles,而是直接将数据批量导入到Hbase中。与上面的例子相比只有微小的差别,具体如下:
将
rdd.saveAsNewAPIHadoopFile("/tmp/iteblog", classOf[ImmutableBytesWritable], classOf[KeyValue], classOf[HFileOutputFormat], conf) |
修改成:
rdd.saveAsNewAPIHadoopFile("/tmp/iteblog", classOf[ImmutableBytesWritable], classOf[KeyValue], classOf[HFileOutputFormat], job.getConfiguration()) |
完整的实现如下:
import org.apache.spark._import org.apache.spark.rdd.NewHadoopRDDimport org.apache.hadoop.hbase.{HBaseConfiguration, HTableDescriptor}import org.apache.hadoop.hbase.client.HBaseAdminimport org.apache.hadoop.hbase.mapreduce.TableInputFormatimport org.apache.hadoop.fs.Path;import org.apache.hadoop.hbase.HColumnDescriptorimport org.apache.hadoop.hbase.util.Bytesimport org.apache.hadoop.hbase.client.Put;import org.apache.hadoop.hbase.client.HTable;import org.apache.hadoop.hbase.mapred.TableOutputFormatimport org.apache.hadoop.mapred.JobConfimport org.apache.hadoop.hbase.io.ImmutableBytesWritableimport org.apache.hadoop.mapreduce.Jobimport org.apache.hadoop.mapreduce.lib.input.FileInputFormatimport org.apache.hadoop.mapreduce.lib.output.FileOutputFormatimport org.apache.hadoop.hbase.KeyValueimport org.apache.hadoop.hbase.mapreduce.HFileOutputFormatimport org.apache.hadoop.hbase.mapreduce.LoadIncrementalHFiles val conf = HBaseConfiguration.create()val tableName = "iteblog"val table = new HTable(conf, tableName) conf.set(TableOutputFormat.OUTPUT_TABLE, tableName)val job = Job.getInstance(conf)job.setMapOutputKeyClass (classOf[ImmutableBytesWritable])job.setMapOutputValueClass (classOf[KeyValue])HFileOutputFormat.configureIncrementalLoad (job, table) // Generate 10 sample data:val num = sc.parallelize(1 to 10)val rdd = num.map(x=>{ val kv: KeyValue = new KeyValue(Bytes.toBytes(x), "cf".getBytes(), "c1".getBytes(), "value_xxx".getBytes() ) (new ImmutableBytesWritable(Bytes.toBytes(x)), kv)}) // Directly bulk load to Hbase/MapRDB tables.rdd.saveAsNewAPIHadoopFile("/tmp/iteblog", classOf[ImmutableBytesWritable], classOf[KeyValue], classOf[HFileOutputFormat], job.getConfiguration()) |
其他
在上面的例子中我们使用了 saveAsNewAPIHadoopFile API来将数据写到HBase中;事实上,我们还可以通过使用 saveAsNewAPIHadoopDataset API来实现同样的目标,我们仅仅需要将下面代码
rdd.saveAsNewAPIHadoopFile("/tmp/iteblog", classOf[ImmutableBytesWritable], classOf[KeyValue], classOf[HFileOutputFormat], job.getConfiguration()) |
修改成
job.getConfiguration.set("mapred.output.dir", "/tmp/iteblog")rdd.saveAsNewAPIHadoopDataset(job.getConfiguration) |
剩下的和和之前完全一致。
本文来自博客园,作者:大码王,转载请注明原文链接:https://www.cnblogs.com/huanghanyu/
posted on
浙公网安备 33010602011771号