2019 SDN上机第5次作业

1.浏览RYU官网学习RYU控制器的安装和RYU开发入门教程,提交你对于教程代码的理解,包括但不限于:



  • 描述官方教程实现了一个什么样的交换机功能?

    将接收到的数据包发送到所有端口的功能

  • 控制器设定交换机支持什么版本的OpenFlow?

    OpenFlow v1.0

  • 控制器设定了交换机如何处理数据包?

    from ryu.base import app_manager
    from ryu.controller import ofp_event
    from ryu.controller.handler import MAIN_DISPATCHER
    from ryu.controller.handler import set_ev_cls
    from ryu.ofproto import ofproto_v1_0
    
    class L2Switch(app_manager.RyuApp):
        #设置想要向交换机协商的OpenFlow版本号
        OFP_VERSIONS = [ofproto_v1_0.OFP_VERSION]
    	#控制器会自动交换Hello包,协商版本号,接着协商完成之后,它再自动执行交换Features包,进行握手
        def __init__(self, *args, **kwargs):
            super(L2Switch, self).__init__(*args, **kwargs)
    	
        ##握手完成后,使用set_ev_cls函数处理Features响应包
        @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
        def packet_in_handler(self, ev):#这里调用处理函数,并解析返回包的字段
            msg = ev.msg
            dp = msg.datapath
            ofp = dp.ofproto
            ofp_parser = dp.ofproto_parser
    
            actions = [ofp_parser.OFPActionOutput(ofp.OFPP_FLOOD)]
            out = ofp_parser.OFPPacketOut(
                datapath=dp, buffer_id=msg.buffer_id, in_port=msg.in_port,
                actions=actions)
            dp.send_msg(out)#datapath类的send_msg方法,Ryu生成联机数据格式并将其发送到交换机
    

2.根据官方教程和提供的示例代码(SimpleSwitch.py),将具有自学习功能的交换机代码(SelfLearning.py)补充完整

from ryu.base import app_manager
from ryu.controller import ofp_event
from ryu.controller.handler import MAIN_DISPATCHER
from ryu.controller.handler import set_ev_cls
from ryu.ofproto import ofproto_v1_0

from ryu.lib.mac import haddr_to_bin
from ryu.lib.packet import packet
from ryu.lib.packet import ethernet
from ryu.lib.packet import ether_types


class SimpleSwitch(app_manager.RyuApp):
	# TODO define OpenFlow 1.0 version for the switch
	# add your code here
	OFP_VERSIONS = [ofproto_v1_0.OFP_VERSION]#

	def __init__(self, *args, **kwargs):
		super(SimpleSwitch, self).__init__(*args, **kwargs)
		self.mac_to_port = {}
    
    
	def add_flow(self, datapath, in_port, dst, src, actions):
		ofproto = datapath.ofproto

		match = datapath.ofproto_parser.OFPMatch(
            in_port=in_port,
            dl_dst=haddr_to_bin(dst), dl_src=haddr_to_bin(src))

		mod = datapath.ofproto_parser.OFPFlowMod(
            datapath=datapath, match=match, cookie=0,
            command=ofproto.OFPFC_ADD, idle_timeout=0, hard_timeout=0,
            priority=ofproto.OFP_DEFAULT_PRIORITY,
            flags=ofproto.OFPFF_SEND_FLOW_REM, actions=actions)
		# TODO send modified message out
		# add your code here
		datapath.send_msg(mod)#


	@set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
	def _packet_in_handler(self, ev):
		msg = ev.msg
		datapath = msg.datapath
		ofproto = datapath.ofproto

		pkt = packet.Packet(msg.data)
		eth = pkt.get_protocol(ethernet.ethernet)

		if eth.ethertype == ether_types.ETH_TYPE_LLDP:
			# ignore lldp packet
			return
		if eth.ethertype == ether_types.ETH_TYPE_IPV6:
			# ignore ipv6 packet
			return       
		
		dst = eth.dst
		src = eth.src
		dpid = datapath.id
		self.mac_to_port.setdefault(dpid, {})

		self.logger.info("packet in DPID:%s MAC_SRC:%s MAC_DST:%s IN_PORT:%s", dpid, src, dst, msg.in_port)

		# learn a mac address to avoid FLOOD next time.
		self.mac_to_port[dpid][src] = msg.in_port

		if dst in self.mac_to_port[dpid]:
			out_port = self.mac_to_port[dpid][dst]
		else:
			out_port = ofproto.OFPP_FLOOD

		# TODO define the action for output
		# add your code here
		actions = [datapath.ofproto_parser.OFPActionOutput(out_port)]

        # install a flow to avoid packet_in next time
		if out_port != ofproto.OFPP_FLOOD:
			self.logger.info("add flow s:DPID:%s Match:[ MAC_SRC:%s MAC_DST:%s IN_PORT:%s ], Action:[OUT_PUT:%s] ", dpid, src, dst, msg.in_port, out_port)
			self.add_flow(datapath, msg.in_port, dst, src, actions)

		data = None
		if msg.buffer_id == ofproto.OFP_NO_BUFFER:
			data = msg.data
        

		# TODO define the OpenFlow Packet Out
		# add your code here
		out = datapath.ofproto_parser.OFPPacketOut(
			datapath=datapath, 
			buffer_id=msg.buffer_id, 
			in_port=msg.in_port,
			actions=actions, data=data)
		datapath.send_msg(out)

print ("PACKET_OUT...")

3.在mininet创建一个最简拓扑,并连接RYU控制器

开启具有SelfLearning功能的控制器 并创建拓扑

4.验证自学习交换机的功能,提交分析过程和验证结果

进行h1对h2的ping操作 ,ryu控制器 显示出预期信息

mininet查看流表

5.写下你的实验体会

python代码的缩进要注意,改了很久很久很久。

增加代码的四个地方,头两个简单的通过参考样例代码可以知道,后面的两个它通过参考同学的代码解决了问题。

posted @ 2019-11-27 20:50  songyue  阅读(150)  评论(0编辑  收藏  举报