霍格沃兹测试开发学社

《Python测试开发进阶训练营》(随到随学!)
2023年第2期《Python全栈开发与自动化测试班》(开班在即)
报名联系weixin/qq:2314507862

利用Playwright MCP与LLM构建复杂的工作流与AI智能体

在当今快速发展的AI领域,将大型语言模型(LLM)与实际应用场景相结合已成为提升生产力的关键。然而,LLM本身存在局限性——它们无法直接与现实世界交互、操作应用程序或执行复杂的工作流。这就是为什么我们需要像Playwright MCP这样的工具来弥合这一差距。

本文将深入探讨如何利用Playwright MCP(Model Context Protocol)与LLM协同工作,构建能够处理复杂任务的工作流和智能AI代理。

什么是Playwright MCP?
Playwright MCP是一个基于Model Context Protocol的桥接工具,它将强大的浏览器自动化框架Playwright与LLM连接起来。MCP协议允许LLM访问外部工具和资源,而Playwright则提供了跨浏览器的自动化能力。

核心组件
Playwright: Microsoft开发的跨浏览器自动化工具,支持Chromium、Firefox和WebKit
MCP Server: 处理LLM与Playwright之间的通信
LLM接口: 提供自然语言理解和任务规划能力
环境设置与安装
prerequisites
Node.js 16+
Python 3.8+
访问LLM API(如OpenAI GPT、Claude等)
安装步骤

安装Playwright

npm install playwright
npx playwright install

安装MCP相关依赖

pip install mcp-client playwright-async

克隆Playwright MCP仓库

git clone https://github.com/your-repo/playwright-mcp.git
cd playwright-mcp
基础配置

config.py

import os
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client

class PlaywrightMCPConfig:
def init(self):
self.browser_type = "chromium"# chromium, firefox, webkit
self.headless = False
self.timeout = 30000
self.llm_api_key = os.getenv("LLM_API_KEY")

def get_server_params(self):
    return StdioServerParameters(
        command="node",
        args=["path/to/playwright-mcp-server.js"]
    )

构建基础工作流

  1. 初始化连接
    import asyncio
    from mcp.client.stdio import stdio_client
    from mcp import ClientSession
    from config import PlaywrightMCPConfig

class PlaywrightMCPClient:
def init(self, config: PlaywrightMCPConfig):
self.config = config
self.session = None

asyncdef connect(self):
    server_params = self.config.get_server_params()
    asyncwith stdio_client(server_params) as (read, write):
        asyncwith ClientSession(read, write) as session:
            self.session = session
            # 初始化会话
            await session.initialize()
            return self
  1. 基本网页操作
    class WebAutomationWorkflow:
    def init(self, mcp_client):
    self.client = mcp_client

    asyncdef navigate_to_page(self, url: str):
    """导航到指定页面"""
    result = await self.client.session.call_tool(
    "navigate",
    {"url": url}
    )
    return result

    asyncdef fill_form(self, selector: str, value: str):
    """填写表单"""
    result = await self.client.session.call_tool(
    "fill",
    {"selector": selector, "value": value}
    )
    return result

    asyncdef click_element(self, selector: str):
    """点击元素"""
    result = await self.client.session.call_tool(
    "click",
    {"selector": selector}
    )
    return result

    asyncdef extract_text(self, selector: str):
    """提取文本内容"""
    result = await self.client.session.call_tool(
    "get_text",
    {"selector": selector}
    )
    return result
    集成LLM创建智能工作流

  2. LLM任务规划器
    import openai
    from typing import List, Dict, Any

class LLMTaskPlanner:
def init(self, api_key: str):
self.client = openai.OpenAI(api_key=api_key)

def plan_workflow(self, user_request: str) -> List[Dict[str, Any]]:
    """使用LLM解析用户请求并生成工作流步骤"""
    
    prompt = f"""
    根据以下用户请求,生成一个详细的Playwright自动化工作流。
    用户请求: {user_request}
    
    请以JSON格式返回步骤列表,每个步骤包含:
    - action: 操作类型 (navigate, click, fill, extract, wait, etc.)
    - parameters: 操作参数
    - description: 步骤描述
    
    只返回JSON格式的结果。
    """
    
    response = self.client.chat.completions.create(
        model="gpt-4",
        messages=[{"role": "user", "content": prompt}],
        temperature=0.1
    )
    
    return self._parse_response(response.choices[0].message.content)

def _parse_response(self, response: str) -> List[Dict[str, Any]]:
    """解析LLM响应为结构化工作流"""
    import json
    try:
        # 清理响应并提取JSON
        cleaned_response = response.strip()
        if"```json"in cleaned_response:
            cleaned_response = cleaned_response.split("```json")[1].split("```")[0]
        elif"```"in cleaned_response:
            cleaned_response = cleaned_response.split("```")[1]
            
        return json.loads(cleaned_response)
    except Exception as e:
        print(f"解析LLM响应失败: {e}")
        return []
  1. 智能工作流执行器
    class IntelligentWorkflowExecutor:
    def init(self, mcp_client, llm_planner):
    self.mcp_client = mcp_client
    self.planner = llm_planner
    self.automation = WebAutomationWorkflow(mcp_client)

    asyncdef execute_user_request(self, user_request: str):
    """执行用户自然语言请求的完整工作流"""

     print(f"处理用户请求: {user_request}")
     
     # 1. 使用LLM规划工作流
     workflow_steps = self.planner.plan_workflow(user_request)
     print(f"生成的工作流步骤: {len(workflow_steps)}步")
     
     # 2. 执行工作流
     results = []
     for i, step in enumerate(workflow_steps, 1):
         print(f"执行步骤 {i}: {step['description']}")
         
         try:
             result = await self._execute_step(step)
             results.append({
                 "step": i,
                 "description": step["description"],
                 "result": result,
                 "status": "success"
             })
         except Exception as e:
             results.append({
                 "step": i,
                 "description": step["description"],
                 "error": str(e),
                 "status": "failed"
             })
             print(f"步骤 {i} 执行失败: {e}")
             break
             
     return results
    

    asyncdef _execute_step(self, step: Dict[str, Any]):
    """执行单个工作流步骤"""
    action = step["action"]
    params = step["parameters"]

     if action == "navigate":
         returnawait self.automation.navigate_to_page(params["url"])
     elif action == "click":
         returnawait self.automation.click_element(params["selector"])
     elif action == "fill":
         returnawait self.automation.fill_form(params["selector"], params["value"])
     elif action == "extract":
         returnawait self.automation.extract_text(params["selector"])
     elif action == "wait":
         await asyncio.sleep(params.get("seconds", 2))
         return"等待完成"
     else:
         raise ValueError(f"未知操作: {action}")
    

高级应用:构建AI智能体

  1. 自适应智能体
    class AdaptiveAIAgent:
    def init(self, mcp_client, llm_planner, executor):
    self.mcp_client = mcp_client
    self.planner = llm_planner
    self.executor = executor
    self.conversation_history = []

    asyncdef process_request(self, user_input: str, context: Dict = None):
    """处理用户输入并执行相应操作"""

     # 添加上下文到对话历史
     self.conversation_history.append({"role": "user", "content": user_input})
     
     # 分析用户意图
     intent = await self._analyze_intent(user_input, context)
     
     if intent["type"] == "automation":
         # 执行自动化工作流
         results = await self.executor.execute_user_request(user_input)
         
         # 生成自然语言总结
         summary = await self._generate_summary(user_input, results)
         
         self.conversation_history.append({
             "role": "assistant", 
             "content": summary
         })
         
         return {
             "type": "automation",
             "results": results,
             "summary": summary
         }
         
     elif intent["type"] == "query":
         # 处理查询请求
         response = await self._handle_query(user_input)
         return {
             "type": "query",
             "response": response
         }
    

    asyncdef _analyze_intent(self, user_input: str, context: Dict) -> Dict:
    """使用LLM分析用户意图"""
    # 简化的意图分析实现
    automation_keywords = ["打开", "点击", "填写", "导航", "提取", "自动化"]

     if any(keyword in user_input for keyword in automation_keywords):
         return {"type": "automation", "confidence": 0.9}
     else:
         return {"type": "query", "confidence": 0.7}
    

    asyncdef _generate_summary(self, request: str, results: List) -> str:
    """生成工作流执行总结"""
    success_steps = [r for r in results if r["status"] == "success"]

     returnf"""
     已完成您的要求: {request}
     
     执行统计:
     - 总步骤数: {len(results)}
     - 成功步骤: {len(success_steps)}
     - 失败步骤: {len(results) - len(success_steps)}
     
     {'所有步骤均成功完成!' if len(success_steps) == len(results) else '部分步骤执行失败,请检查错误信息。'}
     """
    
  2. 复杂工作流示例:电商数据采集
    class EcommerceDataAgent:
    def init(self, base_agent):
    self.agent = base_agent

    asyncdef collect_product_data(self, product_url: str, data_points: List[str]):
    """采集电商产品数据"""

     workflow_request = f"""
     请执行以下电商数据采集任务:
     1. 导航到产品页面: {product_url}
     2. 提取产品标题
     3. 提取产品价格
     4. 提取产品评分
     5. 提取产品描述
     6. 提取客户评论数量
     """
     
     # 执行数据采集
     results = await self.agent.process_request(workflow_request)
     
     # 数据清洗和结构化
     structured_data = await self._structure_product_data(results)
     
     return structured_data
    

    asyncdef _structure_product_data(self, raw_results: Dict) -> Dict:
    """将采集的数据结构化"""
    # 实现数据解析和结构化逻辑
    structured = {}

     for result in raw_results.get("results", []):
         if"result"in result and result["result"]:
             # 解析提取的数据
             text_content = result["result"].get("content", "")
             # 根据步骤描述识别数据类型
             if"标题"in result["description"]:
                 structured["title"] = self._clean_text(text_content)
             elif"价格"in result["description"]:
                 structured["price"] = self._extract_price(text_content)
             elif"评分"in result["description"]:
                 structured["rating"] = self._extract_rating(text_content)
                 
     return structured
    

    def _clean_text(self, text: str) -> str:
    """清理文本数据"""
    return text.strip() if text else""

    def _extract_price(self, text: str) -> float:
    """提取价格信息"""
    import re
    matches = re.findall(r'[\d.,]+', text)
    return float(matches[0].replace(',', '')) if matches else0.0
    错误处理与优化

  3. 鲁棒性增强
    class RobustWorkflowExecutor(IntelligentWorkflowExecutor):
    asyncdef execute_with_retry(self, user_request: str, max_retries: int = 3):
    """带重试机制的工作流执行"""

     for attempt in range(max_retries):
         try:
             results = await self.execute_user_request(user_request)
             
             # 检查是否有失败步骤
             failed_steps = [r for r in results if r["status"] == "failed"]
             ifnot failed_steps:
                 return results
                 
             print(f"第 {attempt + 1} 次尝试,{len(failed_steps)} 个步骤失败")
             
             # 最后一次尝试仍然失败,抛出异常
             if attempt == max_retries - 1:
                 raise Exception(f"工作流执行失败,{len(failed_steps)} 个步骤未完成")
                 
         except Exception as e:
             print(f"第 {attempt + 1} 次尝试失败: {e}")
             if attempt == max_retries - 1:
                 raise
                 
         await asyncio.sleep(2)  # 重试前等待
         
     return []
    

    asyncdef _execute_step_with_fallback(self, step: Dict):
    """带备用方案的步骤执行"""
    try:
    returnawait self._execute_step(step)
    except Exception as e:
    print(f"步骤执行失败: {e},尝试备用方案")

         # 实现备用执行逻辑
         if step["action"] == "click":
             # 尝试不同的选择器
             returnawait self._try_alternative_selectors(step)
         elif step["action"] == "extract":
             # 尝试不同的数据提取方法
             returnawait self._try_alternative_extraction(step)
         else:
             raise
    
  4. 性能监控
    import time
    from dataclasses import dataclass
    from typing import List

@dataclass
class PerformanceMetrics:
total_steps: int
successful_steps: int
failed_steps: int
total_time: float
average_step_time: float

class PerformanceMonitor:
def init(self):
self.metrics_history: List[PerformanceMetrics] = []

def start_execution(self):
    self.start_time = time.time()
    self.step_times = []
    
def record_step(self, success: bool, step_time: float):
    self.step_times.append(step_time)
    
def end_execution(self, total_steps: int, successful_steps: int):
    total_time = time.time() - self.start_time
    avg_time = sum(self.step_times) / len(self.step_times) if self.step_times else0
    
    metrics = PerformanceMetrics(
        total_steps=total_steps,
        successful_steps=successful_steps,
        failed_steps=total_steps - successful_steps,
        total_time=total_time,
        average_step_time=avg_time
    )
    
    self.metrics_history.append(metrics)
    return metrics

实际应用场景

  1. 自动化测试智能体
    class TestingAutomationAgent:
    def init(self, base_agent):
    self.agent = base_agent

    async def run_e2e_test(self, test_scenario: str):
    """执行端到端测试"""
    test_request = f"""
    执行以下端到端测试场景:

     包括:
     1. 导航到测试页面
     2. 执行测试步骤
     3. 验证预期结果
     4. 生成测试报告
     """
     
     return await self.agent.process_request(test_request)
    
  2. 数据监控智能体
    class MonitoringAgent:
    def init(self, base_agent, alert_thresholds: Dict):
    self.agent = base_agent
    self.thresholds = alert_thresholds

    asyncdef monitor_website(self, url: str, check_interval: int = 3600):
    """定期监控网站状态"""
    whileTrue:
    try:
    status = await self._check_website_status(url)

             ifnot status["is_healthy"]:
                 await self._send_alert(f"网站异常: {status['issues']}")
                 
         except Exception as e:
             await self._send_alert(f"监控检查失败: {e}")
             
         await asyncio.sleep(check_interval)
    

    asyncdef _check_website_status(self, url: str) -> Dict:
    """检查网站健康状态"""
    check_request = f"""
    检查网站健康状况:
    1. 访问 {url}
    2. 检查页面加载时间
    3. 验证关键功能是否正常
    4. 检查错误信息
    """

     results = await self.agent.process_request(check_request)
     return self._analyze_health_status(results)
    

结论
通过结合Playwright MCP和LLM,我们能够构建强大的AI智能体和工作流系统,这些系统能够:

理解自然语言指令并转化为具体操作
自动化复杂业务流程,减少人工干预
自适应处理异常情况,提高系统鲁棒性
持续学习和优化执行策略
这种技术组合为自动化测试、数据采集、监控警报等场景提供了全新的解决方案。随着AI技术的不断发展,这种模式将在更多领域展现其价值,推动企业数字化转型和智能化升级。

Playwright MCP与LLM的结合只是AI驱动自动化的开始,这个领域的发展潜力无限,值得我们持续关注和探索。

推荐学习
Playwright web 爬虫与AI智能体课程,限时免费,机会难得。扫码报名,参与直播,希望您在这场公开课中收获满满,开启智能自动化测试的新篇章!

image

posted @ 2025-10-10 15:36  霍格沃兹测试开发学社  阅读(27)  评论(0)    收藏  举报