Loading

10 2018 档案

摘要:简介 Logistic回归是机器学习中最常用最经典的分类方法之一,有的人称为逻辑回归或逻辑斯蒂回归。虽然它称为回归模型,但是却处理的是分类问题,这主要是因为它的本质是一个线性模型加上一个映射函数sigmoid,将线性模型得到的连续结果映射到离散型上。它常用于二分类问题,在多分类问题的推广叫做soft 阅读全文
posted @ 2018-10-28 18:39 hiyoung 阅读(2283) 评论(0) 推荐(0)
摘要:什么是Attention机制 Attention机制通俗的讲就是把注意力集中放在重要的点上,而忽略其他不重要的因素。其中重要程度的判断取决于应用场景,拿个现实生活中的例子,比如1000个人眼中有1000个哈姆雷特。根据应用场景的不同,Attention分为空间注意力和时间注意力,前者用于图像处理,后 阅读全文
posted @ 2018-10-27 11:18 hiyoung 阅读(39624) 评论(3) 推荐(0)
摘要:简介 前面介绍的线性回归,SVM等模型都是基于数据有标签的监督学习方法,本文介绍的聚类方法是属于无标签的无监督学习方法。其他常见的无监督学习还有密度估计,异常检测等。 聚类就是对大量未知标注的数据集,按照数据的内在相似性将数据集划分为多个类别(在聚类算法中称为簇),使类别内的数据相似度高,二类别间的 阅读全文
posted @ 2018-10-20 14:29 hiyoung 阅读(4533) 评论(0) 推荐(0)
摘要:简介: 支持向量机(SVM)是一种二分类的监督学习模型,他的基本模型是定义在特征空间上的间隔最大的线性模型。他与感知机的区别是,感知机只要找到可以将数据正确划分的超平面即可,而SVM需要找到间隔最大的超平面将数据划分开。所以感知机的超平面可以有无数个,但是SVM的超平面只有一个。此外,SVM在引入核 阅读全文
posted @ 2018-10-19 12:21 hiyoung 阅读(778) 评论(0) 推荐(1)
摘要:概述 今天要说一下机器学习中大多数书籍第一个讲的(有的可能是KNN)模型-线性回归。说起线性回归,首先要介绍一下机器学习中的两个常见的问题:回归任务和分类任务。那什么是回归任务和分类任务呢?简单的来说,在监督学习中(也就是有标签的数据中),标签值为连续值时是回归任务,标志值是离散值时是分类任务。而线 阅读全文
posted @ 2018-10-09 22:38 hiyoung 阅读(9888) 评论(0) 推荐(0)