BZOJ1051:受欢迎的牛(并查集 / Tarjan)

1051: [HAOI2006]受欢迎的牛

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 8161  Solved: 4460

Description

每一头牛的愿望就是变成一头最受欢迎的牛。现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎。 这种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么牛A也认为牛C受欢迎。你的任务是求出有多少头牛被所有的牛认为是受欢迎的。

Input

第一行两个数N,M。 接下来M行,每行两个数A,B,意思是A认为B是受欢迎的(给出的信息有可能重复,即有可能出现多个A,B)

Output

一个数,即有多少头牛被所有的牛认为是受欢迎的。

Sample Input

3 3

1 2

2 1

2 3

Sample Output

1

HINT

100%的数据N<=10000,M<=50000
 
题解:
这题一开始我用并查集乱搞了一下,结果搞出来了...
如果一头牛受欢迎,那么他所有喜欢的牛都是被所有牛认为受欢迎的。那么我们关键就是找出第一头被所有牛认为受欢迎的牛。
在合并集合的时候用sum数组维护喜欢父亲结点的个数,当个数等于n时我们就找到一头牛了。
之后再用个bfs来求就好了。
 
代码如下:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <map>
#include <queue>
using namespace std;

const int N = 10005,M = 50005 ;
int n,m,tot;
int head[N],f[N],sum[N],vis[N];
map<int,map<int,int> > mp;
struct Edge{
    int u,v,next ;
}e[M];
void adde(int u,int v){
    e[++tot].u=u;e[tot].v=v;
    e[tot].next=head[u];
    head[u]=tot;
}
int find(int x){
    return f[x]==x ? f[x] : f[x]=find(f[x]);
}
int main(){
    cin>>n>>m;
    int st=0;
    memset(head,-1,sizeof(head));
    for(int i=1;i<=N-5;i++) f[i]=i,sum[i]=1;
    for(int i=1,u,v;i<=m;i++){
        scanf("%d%d",&u,&v);
        if(!mp[u][v]){
            mp[u][v]=1;
            adde(u,v);
            int fx=find(u),fy=find(v);
            if(fx!=fy){
                f[fx]=fy;
                sum[fy]+=sum[fx];
                if(sum[fy]==n) st=fy;
            }
        }
    }
    int cnt =1;
    if(!st)puts("0");
    else{
        queue<int> q;
        q.push(st);vis[st]=1;
        while(!q.empty()){
            int u=q.front();q.pop();
            for(int i=head[u];i!=-1;i=e[i].next){
                int v=e[i].v;
                if(!vis[v]){
                    vis[v]=1;
                    q.push(v);
                    cnt++;
                }
            }
        }
        printf("%d\n",cnt);
    }
    return 0;
}
View Code

 

再来说一下tarjan。

先用tarjan缩点,然后重新构图,找到出度为0的点那么这里面所有的牛都是被所有牛认为受欢迎的。

注意一下构图后不连通的情况就好了。

代码如下:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <stack>
using namespace std;

const int N = 10005 ,M = 50005 ;
int n,m,tot,num,T;
int head[N],dfn[N],low[N],vis[N],scc[N];
struct Edge{
    int u,v,next ;
}e[M];
void adde(int u,int v){
    e[++tot].u=u;e[tot].v=v;
    e[tot].next=head[u];head[u]=tot ;
}
stack <int> s;
void Tanjan(int u){
    dfn[u]=low[u]=++T;vis[u]=1;
    s.push(u);
    for(int i=head[u];i!=-1;i=e[i].next){
        int v=e[i].v;
        if(!vis[v]){
            Tanjan(v);
            low[u]=min(low[u],low[v]);
        }else{
            low[u]=min(low[u],dfn[v]);
        }
    }
    if(low[u]==dfn[u]){
        num++;int now;
        do{
            now = s.top();s.pop();
            scc[now]=num;
        }while(!s.empty() && now!=u);
    }
}
int main(){
    scanf("%d%d",&n,&m);
    memset(head,-1,sizeof(head));
    for(int i=1,u,v;i<=m;i++){
        scanf("%d%d",&u,&v);
        adde(u,v);
    }
    for(int i=1;i<=n;i++){
        if(!vis[i]) Tanjan(i);
    }
    int out[N]={0},in[N]={0};
    for(int u=1;u<=n;u++){
        for(int i=head[u];i!=-1;i=e[i].next){
            int v=e[i].v;
            if(scc[u]!=scc[v]){
                out[scc[u]]++;
                in[scc[v]]++;
            }
        }
    }
    int cnt=0,ans=0,tag;
    for(int i=1;i<=num;i++) if(!out[i]) cnt++,tag=i;     
    if(cnt==1){
        for(int i=1;i<=n;i++) if(scc[i]==tag) ans++;
        printf("%d",ans);
    }else puts("0");
    return 0;
}

 

posted @ 2018-12-01 00:10  heyuhhh  阅读(...)  评论(... 编辑 收藏