水位线

Flink 中的时间语义

事件时间

事件时间,是指每个事件在对应的设备上发生的时间,也就是数据生成的时间

数据一旦产生,这个时间自然就确定了,所以它可以作为一个属性嵌入到数据中。这其实就是这条数据记录的 “时间戳”(Timestamp)

处理时间

数据真正被处理的时刻

在事件时间语义下,我们对于时间的衡量,就不看任何机器的系统时间了,而是依赖于数据本身。打个比方,这相当于任务处理的时候自己本身是没有时钟的,所以只好来一个数据就问一下 “现在几点了”

而数据本身也没有表,只有一个自带的 “出厂时间”,于是任务就基于这个时间来确定自己的时钟。由于流处理中数据是源源不断产生的,一般来说,先产生的数据也会先被处理,所以当任务不停地接到数据时,它们的时间戳也基本上是不断增长的,就可以代表时间的推进

当然我们会发现,这里有个前提,就是“先产生的数据先被处理”,这要求我们可以保证数据到达的顺序。但是由于分布式系统中网络传输延迟的不确定性,实际应用中我们要面对的数据流往往是乱序的。在这种情况下,就不能简单地把数据自带的时间戳当作时钟了,而需要用另外的标志来表示事件时间进展,在 Flink 中把它叫作事件时间的 “水位线”(Watermarks)

两种时间语义的对比

实际应用中,数据产生的时间和处理的时间可能是完全不同的。很长时间收集起来的数据,处理或许只要一瞬间;也有可能数据量过大、处理能力不足,短时间堆了大量数据处理不完,产生“背压”(back pressure)

通常来说,处理时间是我们计算效率的衡量标准,而事件时间会更符合我们的业务计算逻辑。所以更多时候我们使用事件时间;不过处理时间也不是一无是处。对于处理时间而言,由于没有任何附加考虑,数据一来就直接处理,因此这种方式可以让我们的流处理延迟降到最低,效率达到最高

但是在分布式环境中,处理时间其实是不确定的,各个并行任务时钟不统一;而且由于网络延迟,导致数据到达各个算子任务的时间有快有慢,对于窗口操作就可能收集不到正确的数据了,数据处理的顺序也会被打乱。这就会影响到计算结果的正确性。所以处理时间语义,一般用在对实时性要求极高、而对计算准确性要求不太高的场景

而在事件时间语义下,水位线成为了时钟,可以统一控制时间的进度。这就保证了我们总可以将数据划分到正确的窗口中,比如 8 点 59 分 59 秒产生的数据,无论网络传输的延迟是多少,它永远属于 8 点~9 点的窗口,不会错分。但我们知道数据还可能是乱序的,要想让窗口正确地收集到所有数据,就必须等这些错乱的数据都到齐,这就需要一定的等待时间。所以整体上看,事件时间语义是以一定延迟为代价,换来了处理结果的正确性。由于网络延迟一般只有毫秒级,所以即使是事件时间语义,同样可以完成低延迟实时流处理的任务

另外,除了事件时间和处理时间, Flink 还有一个“摄入时间”(Ingestion Time)的概念,它是指数据进入 Flink 数据流的时间,也就是 Source 算子读入数据的时间。摄入时间相当于是事件时间和处理时间的一个中和,它是把 Source 任务的处理时间,当作了数据的产生时间添加到数据里。这样一来,水位线(watermark)也就基于这个时间直接生成,不需要单独指定了。这种时间语义可以保证比较好的正确性,同时又不会引入太大的延迟。它的具体行为跟事件时间非常像,可以当作特殊的事件时间来处理

在 Flink 中,由于处理时间比较简单,早期版本默认的时间语义是处理时间;而考虑到事件时间在实际应用中更为广泛,从 1.12 版本开始, Flink 已经将事件时间作为了默认的时间语义


水位线

在事件时间语义下,我们不依赖系统时间,而是基于数据自带的时间戳去定义了一个时钟,用来表示当前时间的进展。于是每个并行子任务都会有一个自己的逻辑时钟,它的前进是靠数据的时间戳来驱动的

但在分布式系统中,这种驱动方式又会有一些问题。因为数据本身在处理转换的过程中会变化,如果遇到窗口聚合这样的操作,其实是要攒一批数据才会输出一个结果,那么下游的数据就会变少,时间进度的控制就不够精细了。另外,数据向下游任务传递时,一般只能传输给一个子任务(除广播外),这样其他的并行子任务的时钟就无法推进了。例如一个时间戳为 9 点整的数据到来,当前任务的时钟就已经是 9 点了;处理完当前数据要发送到下游,如果下游任务是一个窗口计算,并行度为 3,那么接收到这个数据的子任务,时钟也会进展到 9 点, 9点结束的窗口就可以关闭进行计算了;而另外两个并行子任务则时间没有变化,不能进行窗口计算

所以我们应该把时钟也以数据的形式传递出去,告诉下游任务当前时间的进展;而且这个时钟的传递不会因为窗口聚合之类的运算而停滞。一种简单的想法是,在数据流中加入一个时钟标记,记录当前的事件时间;这个标记可以直接广播到下游,当下游任务收到这个标记,就可以更新自己的时钟了。由于类似于水流中用来做标志的记号,在 Flink 中,这种用来衡量事件时间(Event Time)进展的标记,就被称作 “水位线”(Watermark)

有序流中的水位线

这时的水位线,其实就是有序流中的一个周期性出现的时间标记,这里的周期时间是指处理时间(系统时间),而不是事件时间

乱序流中的水位线

只有数据的时间戳比当前时钟大,才能推动时钟前进,这时才插入水位线

如果考虑到大量数据同时到来的处理效率,我们同样可以周期性地生成水位线。这时只需要保存一下之前所有数据中的最大时间戳,需要插入水位线时,就直接以它作为时间戳生成新的水位线

为了让窗口能够正确收集到迟到的数据,我们也可以等上 2 秒;也就是用当前已有数据的最大时间戳减去 2 秒,就是要插入的水位线的时间戳

这就相当于我们赶早班车,司机到了9点发车,但是司机看见了有学生在来的路上,于是晚发了2秒,所以学生赶上了车

水位线的特性

  • 水位线是插入到数据流中的一个标记, 可以认为是一个特殊的数据
  • 水位线主要的内容是一个时间戳,用来表示当前事件时间的进展
  • 水位线是基于数据的时间戳生成的
  • 水位线的时间戳必须单调递增,以确保任务的事件时间时钟一直向前推进
  • 水位线可以通过设置延迟,来保证正确处理乱序数据
  • 一个水位线 Watermark(t), 表示在当前流中事件时间已经达到了时间戳 t, 这代表 t 之前的所有数据都到齐了,之后流中不会出现时间戳 t’ ≤ t 的数据

水位线是 Flink 流处理中保证结果正确性的核心机制,它往往会跟窗口一起配合,完成对乱序数据的正确处理


水位线生成策略

DataStream<Event> stream = env.addSource(new ClickSource());
DataStream<Event> withTimestampsAndWatermarks = stream.assignTimestampsAndWatermarks(<watermark strategy>);
public interface WatermarkStrategy<T> extends TimestampAssignerSupplier<T>,WatermarkGeneratorSupplier<T>{
    @Override
    TimestampAssigner<T> createTimestampAssigner(TimestampAssignerSupplier.Context context);
    
    @Override
    WatermarkGenerator<T> createWatermarkGenerator(WatermarkGeneratorSupplier.Context context);
}
  • TimestampAssigner:主要负责从流中数据元素的某个字段中提取时间戳,并分配给元素。时间戳的分配是生成水位线的基础

  • WatermarkGenerator:主要负责按照既定的方式,基于时间戳生成水位线

    在WatermarkGenerator 接口中,主要又有两个方法: onEvent() 和 onPeriodicEmit()

    • onEvent:每个事件(数据)到来都会调用的方法,它的参数有当前事件、时间戳,以及允许发出水位线的一个 WatermarkOutput,可以基于事件做各种操作

    • onPeriodicEmit:周期性调用的方法,可以由 WatermarkOutput 发出水位线。周期时间为处理时间,可以调用环境配置的.setAutoWatermarkInterval()方法来设置,默认为 200ms

      env.getConfig().setAutoWatermarkInterval(60 * 1000L);
      

有序流

对于有序流,主要特点就是时间戳单调增长( Monotonously Increasing Timestamps),所以永远不会出现迟到数据的问题。这是周期性生成水位线的最简单的场景,直接调用WatermarkStrategy.forMonotonousTimestamps()方法就可以实现。简单来说,就是直接拿当前最大的时间戳作为水位线就可以了

SingleOutputStreamOperator<Event> stream = env.addSource(new ClickSource())
				//有序流的watermark生成,一般测试才用
				.assignTimestampsAndWatermarks(WatermarkStrategy.<Event>forMonotonousTimestamps()
						.withTimestampAssigner(new SerializableTimestampAssigner<Event>() {
							@Override
							public long extractTimestamp(Event event, long l) {
								return event.timestamp;
							}
						}));

上面代码中我们调用.withTimestampAssigner()方法,将数据中的 timestamp 字段提取出来,作为时间戳分配给数据元素;然后用内置的有序流水位线生成器构造出了生成策略。这样,提取出的数据时间戳,就是我们处理计算的事件时间。

这里需要注意的是,时间戳和水位线的单位,必须都是毫秒


乱序流

由于乱序流中需要等待迟到数据到齐,所以必须设置一个固定量的延迟时间( Fixed Amount of Lateness)。这时生成水位线的时间戳,就是当前数据流中最大的时间戳减去延迟的结果,相当于把表调慢,当前时钟会滞后于数据的最大时间戳。调用 WatermarkStrategy.forBoundedOutOfOrderness()方法就可以实现。这个方法需要传入一个 maxOutOfOrderness 参数,表示“最大乱序程度”,它表示数据流中乱序数据时间戳的最大差值;如果我们能确定乱序程度,那么设置对应时间长度的延迟,就可以等到所有的乱序数据了

SingleOutputStreamOperator<Event> stream = env.addSource(new ClickSource())
				.assignTimestampsAndWatermarks(WatermarkStrategy.<Event>forBoundedOutOfOrderness(Duration.ofSeconds(5))
						.withTimestampAssigner(new SerializableTimestampAssigner<Event>() {
							@Override
							public long extractTimestamp(Event event, long l) {
								return event.timestamp;
							}
						}));

上面代码中,我们同样提取了 timestamp 字段作为时间戳,并且以 5 秒的延迟时间创建了处理乱序流的水位线生成器。

事实上,有序流的水位线生成器本质上和乱序流是一样的,相当于延迟设为 0 的乱序流水位线生成器,两者完全等同:

WatermarkStrategy.forMonotonousTimestamps()
WatermarkStrategy.forBoundedOutOfOrderness(Duration.ofSeconds(0))

这里需要注意的是,乱序流中生成的水位线真正的时间戳,其实是 当前最大时间戳 – 延迟时间 – 1,这里的单位是毫秒

可以通过BoundedOutOfOrdernessWatermarks 的源码中查看:

public void onPeriodicEmit(WatermarkOutput output) {
	output.emitWatermark(new Watermark(maxTimestamp - outOfOrdernessMillis - 1));
}

水位线的传递

水位线本质 :它表示的是 “当前时间之前的数据,都已经到齐了”

类似“木桶原理”:所有的上游并行任务就像围成木桶的一块块木板,它们中最短的那一块,决定了我们桶中的水位

水位线的传递


小结

水位线在事件时间的世界里面,承担了时钟的角色。也就是说在事件时间的流中,水位线是唯一的时间尺度。如果想要知道现在几点,就要看水位线的大小。后面讲到的窗口的闭合,以及定时器的触发都要通过判断水位线的大小来决定是否触发。水位线是一种特殊的事件,由程序员通过编程插入的数据流里面,然后跟随数据流向下游流动

水位线的默认计算公式:水位线 = 观察到的最大事件时间 – 最大延迟时间 – 1 毫秒

所以这里涉及到一个问题,就是不同的算子看到的水位线的大小可能是不一样的。因为下游的算子可能并未接收到来自上游算子的水位线,导致下游算子的时钟要落后于上游算子的时钟。比如 map->reduce 这样的操作,如果在 map 中编写了非常耗时间的代码,将会阻塞水位线的向下传播,因为水位线也是数据流中的一个事件,位于水位线前面的数据如果没有处理完毕,那么水位线不可能弯道超车绕过前面的数据向下游传播,也就是说会被前面的数据阻塞。这样就会影响到下游算子的聚合计算,因为下游算子中无论由窗口聚合还是定时器的操作,都需要水位线才能触发执行。这也就告诉了我们,在编写 Flink 程序时,一定要谨慎的编写每一个算子的计算逻辑,尽量避免大量计算或者是大量的 IO 操作,这样才不会阻塞水位线的向下传递

在数据流开始之前, Flink 会插入一个大小是负无穷大(在 Java 中是 -Long.MAX_VALUE)的水位线,而在数据流结束时, Flink 会插入一个正无穷大(Long.MAX_VALUE)的水位线,保证所有的窗口闭合以及所有的定时器都被触发

对于离线数据集, Flink 也会将其作为流读入,也就是一条数据一条数据的读取。在这种情况下, Flink 对于离线数据集,只会插入两次水位线,也就是在最开始处插入负无穷大的水位线,在结束位置插入一个正无穷大的水位线。因为只需要插入两次水位线,就可以保证计算的正确,无需在数据流的中间插入水位线了

水位线的重要性在于它的逻辑时钟特性,而逻辑时钟这个概念可以说是分布式系统里面最为重要的概念之一了,理解透彻了对理解各种分布式系统非常有帮助。具体可以参考 LeslieLamport 的论文

posted @ 2022-11-03 23:42  黄一洋  阅读(63)  评论(0)    收藏  举报