基于加权KPCA的谱聚类算法

Weighted Kernel PCA

KPCA算法是基础,快速了解请查阅我的博客

为了提高KPCA的鲁棒性和稀疏性,可以添加权重,对于噪声点可以减少其权重。原来的公式基础上,引入对称半正定权重矩阵\(V\)

\[\eqalign{& \mathop {max} _{ w,e}J_p(w,e) =\gamma \frac{1}{2}e^TVe−\frac{1}{2}w^Tw \cr & e=\Phi w \cr & \Phi = \begin{bmatrix} \phi(x_1)^T; ...;\phi(x_N)^T \end{bmatrix}\\ \cr & V = V^T >0} \]

同样用Lagrangian求解:

\[L(w, e;\alpha) = \gamma \frac{1}{2}e^TVe -\frac{1}{2} w^Tw- \alpha ^T(e_ - \phi w) \]

最优时,有

\[\frac {\partial L}{\partial w} = 0 \ \rightarrow w = \Phi ^T \alpha \]

\[\frac {\partial L}{\partial e} = 0 \ \rightarrow \alpha = \gamma V e\]

\[\frac {\partial L}{\partial \alpha} = 0 \ \rightarrow e = \Phi w\]

消去\(w, e\)得到非对称矩阵的特征值分解问题:

\[\begin{align}V \Omega \alpha = \lambda \alpha\end{align} \]

\(V \Omega\)可能不是对称的,但是因为\(V, \Omega\)时正定的, 所以\(V \Omega\)也是正定的。

测试数据的\(x\)的投影坐标为:

\[z(x) = w^T \phi(x) = \sum _{l=1}^N \alpha _l \kappa (x_l, x) \]

谱聚类的联系

kernel alignment

\[\Omega \bar q = \lambda \bar q \]

Markov Random Walks

\[D^{-1}W r=\lambda r \]

normalized cut

\[L \bar q = \lambda D \bar q \]

NJW

\[(D^{-1}WD^{-\frac{1}{2}}) \bar q = \lambda D^{-\frac{1}{2}}\bar q \]

Method Original Problem V Relaxed Solution
Alignment $$\Omega q = \lambda q$$ $$I_N$$ $$\alpha^{(1)}$$
Ncut $$L q = \lambda D q$$ $$D^{-1}$$ $$\alpha^{(2)}$$
Random walks $$D^{-1}W q=\lambda q$$ $$D^{-1}$$ $$\alpha^{(2)}$$
NJW $$(D{-1}WD{2}}) \bar q = \lambda D^{-\frac{1}{2}}\bar q$$ $$D^{-1}$$ $$D{\frac{1}{2}}\alpha$$

带偏置的推导

\[\eqalign {& \mathop{max} _{w,e}J_p(w,e)=\gamma \frac{1}{2}e^TVe−\frac{1}{2}w^Tw \cr & e=\Phi w + b 1_N \cr & \Phi = \begin{bmatrix} \phi(x_1)^T; ...;\phi(x_N)^T \end{bmatrix} \cr & V = V^T >0 } \]

同样用Lagrangian求解:

\[L(w, e;\alpha) = \gamma \frac{1}{2}e^TVe -\frac{1}{2} w^Tw- \alpha ^T(e_ - \phi w- b1_N) \]

最优时,有

\[\eqalign{& \frac {\partial L}{\partial w} = 0 \ \rightarrow w = \Phi ^T \alpha \cr & \frac {\partial L}{\partial e} = 0 \ \rightarrow \alpha = \gamma V e \cr & \frac {\partial L}{\partial b} = 0 \ \rightarrow 1_N^T \alpha = 0 \cr & \frac {\partial L}{\partial \alpha} = 0 \ \rightarrow e = \Phi w+ b 1_N}\]

解得:

\[b = -\frac{1}{1_N^T V 1_N}1_N^T V \Omega \alpha \]

消去\(w, e\)得到特征值分解问题:

\[\begin{align}M \Omega \alpha = \lambda \alpha\end{align} \]

其中 $$M = V-\frac{1}{1_N^T V 1_N} V 1_N 1_N^T V $$

测试数据的\(x\)的投影坐标为:

\[z(x) = w^T \phi(x) +b= \sum _{l=1}^N \alpha _l \kappa (x_l, x)+b \]

测试数据的类别可以通过以下得到评估,有疑问请查阅博客

\[q(x) = {\rm sign}({w^{T}} \phi (x)-\theta) \\={\rm sign} \left( {\sum \limits_{l=1}^{N}}{\alpha_{l}}K(x_{l}, x)-\theta \right) \]

参考文献

[1]. Alzate C, Suykens J A K. A weighted kernel PCA formulation with out-of-sample extensions for spectral clustering methods[C]//Neural Networks, 2006. IJCNN'06. International Joint Conference on. IEEE, 2006: 138-144.

[2]. Bengio Y, Paiement J, Vincent P, et al. Out-of-sample extensions for lle, isomap, mds, eigenmaps, and spectral clustering[C]//Advances in neural information processing systems. 2004: 177-184.

[3]. C. Alzate and J. A. K. Suykens. Kernel principal component analysis using an epsilon insensitive robust loss function. Internal report 06-03.Submitted for publication, ESAT-SISTA, K. U. Leuven, 2006

posted on 2017-05-12 14:17  hainingwyx  阅读(715)  评论(0编辑  收藏  举报

导航