浅谈范德蒙德(Vandermonde)方阵的逆矩阵的求法以及快速傅里叶变换(FFT)中IDFT的原理

浅谈范德蒙德(Vandermonde)方阵的逆矩阵与拉格朗日(Lagrange)插值的关系以及快速傅里叶变换(FFT)中IDFT的原理

标签: 行列式 矩阵 线性代数 FFT 拉格朗日插值


只要稍微看过一点线性代数的应该都知道范德蒙德行列式。

\[V(x_0,x_1,\cdots ,x_{n-1})=\begin{bmatrix} {1}&{1}&{\cdots}&{1}\\ {x_{0}}&{x_{1}}&{\cdots}&{x_{n-1}}\\ {x_{0}^2}&{x_{1}^2}&{\cdots}&{x_{n-1}^2}\\ {\vdots}&{\vdots}&{}&{\vdots}\\ {x_{0}^{n-1}}&{x_{1}^{n-1}}&{\cdots}&{x_{n-1}^{n-1}}\\ \end{bmatrix} \]

而范德蒙德行列式由于其本身的特殊性,具有通项公式:

\[V(x_0,x_1,\cdots ,x_{n-1})=\prod _{n > i > j \geq 0}(x _{i}-x _{j}) \]

我们同样可以把行列式中的项写到矩阵中来,即范德蒙德方阵

\[V=\begin{pmatrix} {1}&{1}&{\cdots}&{1}\\ {x_{0}}&{x_{1}}&{\cdots}&{x_{n-1}}\\ {x_{0}^2}&{x_{1}^2}&{\cdots}&{x_{n-1}^2}\\ {\vdots}&{\vdots}&{}&{\vdots}\\ {x_{0}^{n-1}}&{x_{1}^{n-1}}&{\cdots}&{x_{n-1}^{n-1}}\\ \end{pmatrix}\]

考虑范德蒙德方阵的逆矩阵,我们可以借助伴随矩阵来计算。
对于\(V\)的伴随矩阵\(V^*\)

\[(V^*)_{ij}=c_{ij} \]

其中\(c_{ij}\)\(V\)的代数余子式
\(V^{-1}={V* \over det(V)}\)
那么对于每一项,有\((V^{-1})_{ij}={c_{ij} \over det(V)}\)
我们只需要知道每一个代数余子式其与行列式的商即可。
而然这种方法比较复杂,尤其对于缺失了一行的范德蒙德行列式难以计算,而本文的重点并不在此,如果想找详细的证明可以去看这篇博客Vandermonde 矩陣的逆矩陣公式
最后可以得到

\[(V^{-1})_{ij}=(-1)^{j+1}{ \sum\limits_{0 \leq p_1<\cdots < p_{n-j} < n;\ p_1,p_2,\cdots p_{n-j} \ne i} x_{p_1} x_{p_2} \cdots x_{p_{n-j}} \over \prod\limits_{0 \leq k < n;\ k\ne i} (x_k-x_i)} \]

上面的方法太过复杂,接下来我们考虑范德蒙德方阵的实际意义进行思考。
重新审视方阵,发现乘上一个范德蒙德方阵相当于带进了\(n\)个点进行求值,即

\[{\begin{pmatrix} {a_0}\\ {a_1}\\ {a_2}\\ {\vdots}\\ {a_{n-1}}\\ \end{pmatrix} }^T\begin{pmatrix} {1}&{1}&{\cdots}&{1}\\ {x_{0}}&{x_{1}}&{\cdots}&{x_{n-1}}\\ {x_{0}^2}&{x_{1}^2}&{\cdots}&{x_{n-1}^2}\\ {\vdots}&{\vdots}&{}&{\vdots}\\ {x_{0}^{n-1}}&{x_{1}^{n-1}}&{\cdots}&{x_{n-1}^{n-1}}\\ \end{pmatrix}={ \begin{pmatrix} {y_0}\\ {y_1}\\ {y_2}\\ {\vdots}\\ {y_{n-1}} \end{pmatrix}}^T \]

相当于有多项式\(f(x)=\sum_{i=0}^{n-1} a_ix^i\),其中\(y_i=f(x_i)\)
乘上范德蒙德方阵相当于带入\(n\)个点求值,反过来,乘上其逆矩阵就应该是用\(n\)个点插值。

\[{\begin{pmatrix} {a_0}\\ {a_1}\\ {a_2}\\ {\vdots}\\ {a_{n-1}}\\ \end{pmatrix}}^T ={\begin{pmatrix} {y_0}\\ {y_1}\\ {y_2}\\ {\vdots}\\ {y_{n-1}} \end{pmatrix}}^T \begin{pmatrix} {1}&{1}&{\cdots}&{1}\\ {x_{0}}&{x_{1}}&{\cdots}&{x_{n-1}}\\ {x_{0}^2}&{x_{1}^2}&{\cdots}&{x_{n-1}^2}\\ {\vdots}&{\vdots}&{}&{\vdots}\\ {x_{0}^{n-1}}&{x_{1}^{n-1}}&{\cdots}&{x_{n-1}^{n-1}}\\ \end{pmatrix}^{-1} \]

那么我们考虑拉格朗日插值,有

\[f(x)=\sum_{i}y_i\prod_{j\ne i} {x-x_j \over x_i-x_j} \]

显然,\((V^{-1})_{ij}\)\(\prod\limits_{k\ne i} {x-x_k \over x_i-x_k}\)\(x^{j-1}\)项的系数。

快速傅立叶变换的核心思想也是将系数向量迅速变换为点值向量,再迅速的将点值向量还原成系数向量,其中还原的操作我们称之为\(IDFT\)
\(1\)\(n\)次复根\(w\),如果没有特别说明,以下本文中的\(w\)都为\(e^{2\pi \over n}\)
在做快速傅立叶变换的时候,我们乘上了一个\(V(w_0,w_1,\cdots,w_{n-1})\)的矩阵。
而在\(IDFT\)时,我们需要乘上\(V(w_0,w_1,\cdots,w_{n-1})^{-1}\),但是在实际应用中,我们会直接乘上$ {1 \over n}V(w_0,w_{-1},\cdots,w_{-n+1}) $。接下来笔者将证明这两个矩阵是相同的。(当然我们默认n为2的次幂)

\[\prod\limits_{j\ne i} {(x-w^j) \over (w^i-w^j)}={\prod\limits_{j\ne i} (x-w^j) \over \prod\limits_{j\ne i} (w^i-w^j)} \]

不妨令$$G(x)=\prod_{0 \leq j < n} (x-w^j)$$
\(w^{0},w^1,\cdots,w^{n-1}\)都是1的n次复根,根据代数基本定理,显然有$$G(x)=x^n-1$$
那么考虑原式分母$$\prod\limits_{j\ne i} (w^i-w^j) = \lim _{x \to w^i}{G(x) \over {x-w^i}}$$
根据洛必达法则,这个极限的值相当于上下部分求导的商。

\[\lim _{x \to w^i}{G(x) \over {x-w^i}}=\lim _{x \to w^i} G'(x)=n \times w^{i(n-1)}=n \times w^{-i} \]

原式分子

\[{\prod\limits_{j\ne i} (x-w^j)}={G(x) \over {x-w^i}}={1-x^n \over {w^i-x}}\\ =w^{-i} \times \begin{pmatrix}{1 \over 1- x w^{-i}}-{x^n \over 1-xw^{-i}}\end{pmatrix}\\ =w^{-i} \times \begin{pmatrix}{\sum_{j=0}^{\infty} w^{-ij}x^j -\sum_{j=n}^{\infty} w^{-i(j-n)}x^j} \end{pmatrix}\\ =w^{-i} \times \sum_{j=0}^{n-1} w^{-ij} x^j \]

分子除以分母,得

\[原式={w^{-i} \times \sum\limits_{j=0}^{n-1} w^{-ij} x^j \over n \times w^{-i}}\\ =\sum_{j=0}^{n-1} {w^{-ij} \over n}x^j\]

对比各项系数,不难得出两矩阵相同,即

\[\begin{pmatrix} {1}&{1}&{\cdots}&{1}\\ {1}&{w^{1}}&{\cdots}&{w^{n-1}}\\ {1}&{w^{2}}&{\cdots}&{w^{(n-1)2}}\\ {\vdots}&{\vdots}&{}&{\vdots}\\ {1}&{w^{n-1}}&{\cdots}&{w^{(n-1)(n-1)}}\\ \end{pmatrix}^{-1} ={1 \over n}\begin{pmatrix} {1}&{1}&{\cdots}&{1}\\ {1}&{w^{-1}}&{\cdots}&{w^{-(n-1)}}\\ {1}&{w^{-2}}&{\cdots}&{w^{-(n-1)2}}\\ {\vdots}&{\vdots}&{}&{\vdots}\\ {1}&{w^{-(n-1)}}&{\cdots}&{w^{-(n-1)(n-1)}}\\ \end{pmatrix} \]

posted @ 2018-10-04 11:58  Deadecho  阅读(...)  评论(...编辑  收藏