#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2018/11/7 14:50
# @Author : gylhaut
# @Site : "http://www.cnblogs.com/gylhaut/"
# @File : KNNAlgorithm.py
# @Software: PyCharm
# coding:utf-8
from numpy import *
import operator
##给出训练数据以及对应的类别
def createDataSet():
group = array([[1.0, 2.0], [1.2, 0.1], [0.1, 1.4], [0.3, 3.5]])
labels = ['A', 'A', 'B', 'B']
return group, labels
###通过KNN进行分类
def classify(input, dataSet, label, k):
'''
:param input: test集
:param dataSet: 训练集
:param label: 训练output
:param k: k值选择
:return:
'''
dataSize = dataSet.shape[0] # 4
####计算欧式距离
# print(tile(input, (dataSize, 1)))
diff = tile(input, (dataSize, 1)) - dataSet
sqdiff = diff ** 2
squareDist = sum(sqdiff, axis=1) ###行向量分别相加,从而得到新的一个行向量
dist = squareDist ** 0.5
#print(dist)
##对距离进行排序
sortedDistIndex = argsort(dist) ##argsort()根据元素的值从小到大对元素进行排序,返回下标
#print(sortedDistIndex)
classCount = {}
for i in range(k):
voteLabel = label[sortedDistIndex[i]]
#print(voteLabel)
###对选取的K个样本所属的类别个数进行统计
classCount[voteLabel] = classCount.get(voteLabel, 0) + 1
###选取出现的类别次数最多的类别
#print(classCount)
maxCount = 0
for key, value in classCount.items():
if value > maxCount:
maxCount = value
classes = key
return classes
from numpy import *
dataSet,labels = createDataSet()
input = array([1.1,0.3])
K = 3
output = classify(input,dataSet,labels,K)
print("测试数据为:",input,"分类结果为:",output)