摘要: 1 引言 传统的推荐方法: 协同过滤:数据稀疏、冷启动问题。浅层模型无法学习到用户和项目的深层次特征。 基于内容的推荐方法:需要有效的特征提取。浅层模型依赖于人工设计特征,有效性和可扩展性有限。 混合推荐方法:辅助信息往往具有多模态、数据异构、大规模、数据稀疏和分布不均匀等复杂特征,融合多源异构数据 阅读全文