上一页 1 2 3 4 5 6 7 8 9 ··· 11 下一页
摘要: import seaborn as sns import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt %matplotlib inline x = np.random 阅读全文
posted @ 2023-09-21 22:14 郭小睿 阅读(269) 评论(0) 推荐(0)
摘要: import seaborn as sns import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt %matplotlib inline 使用xkcd颜色来命名颜色 阅读全文
posted @ 2023-09-20 23:34 郭小睿 阅读(161) 评论(0) 推荐(0)
摘要: import seaborn as sns import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt %matplotlib inline # 设置图形大小为 (6, 阅读全文
posted @ 2023-09-19 23:57 郭小睿 阅读(114) 评论(0) 推荐(0)
摘要: import seaborn as sns import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt %matplotlib inline sns.set_style 阅读全文
posted @ 2023-09-19 23:27 郭小睿 阅读(38) 评论(0) 推荐(0)
摘要: import seaborn as sns import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt %matplotlib inline def sinplot(f 阅读全文
posted @ 2023-09-19 22:57 郭小睿 阅读(55) 评论(0) 推荐(0)
摘要: import pandas as pd import matplotlib.pyplot as plt reviews = pd.read_csv('fandango_scores.csv') # 电影评分的数据集,包含了电影名称和不同对象的评分 cols = ['FILM','RT_user_no 阅读全文
posted @ 2023-09-19 22:20 郭小睿 阅读(96) 评论(0) 推荐(0)
摘要: 打包文件夹 如果要打包一个文件夹,可以使用以下命令: pyinstaller --add-data "templates:index" -F main.py 上述命令中,使用了--add-data选项,指定了打包templates文件夹,其中冒号前面的是文件夹的路径,后面的是指定目标路径。这样,打包 阅读全文
posted @ 2023-09-19 20:57 郭小睿 阅读(1115) 评论(0) 推荐(0)
摘要: 条形图 import pandas as pd reviews = pd.read_csv('fandango_scores.csv') # 电影评分的数据集,包含了电影名称和不同对象的评分 cols = ['FILM','RT_user_norm','Metacritic_user_nom','I 阅读全文
posted @ 2023-09-19 00:10 郭小睿 阅读(119) 评论(0) 推荐(0)
摘要: 创建子图 import matplotlib.pyplot as plt import numpy as np import pandas as pd unrate = pd.read_csv('UNRATE.csv') unrate['DATE'] = pd.to_datetime(unrate[ 阅读全文
posted @ 2023-09-18 23:29 郭小睿 阅读(126) 评论(0) 推荐(0)
摘要: import pandas as pd unrate = pd.read_csv('UNRATE.csv') unrate['DATE'] = pd.to_datetime(unrate['DATE']) #时间日期转换 print(unrate.head(12)) DATE VALUE 0 194 阅读全文
posted @ 2023-09-18 01:19 郭小睿 阅读(71) 评论(0) 推荐(0)
摘要: import pandas as pd titanic_survival = pd.read_csv("titanic_train.csv") # 返回第一百行数据 def hundredth_row(column): hundredth_item = column.loc[99] return h 阅读全文
posted @ 2023-09-18 00:07 郭小睿 阅读(61) 评论(0) 推荐(0)
摘要: import pandas food_info = pandas.read_csv("food_info.csv",encoding="gbk") print(food_info) 名称 价格(元) 糖分(g) 重量(kg) 含水量(mg) 0 苹果 200 20 10 30 1 香蕉 100 50 阅读全文
posted @ 2023-09-15 01:00 郭小睿 阅读(120) 评论(0) 推荐(0)
摘要: import pandas food_info = pandas.read_csv("food_info.csv",encoding="gbk") print(food_info) 名称 价格(元) 糖分(g) 重量(kg) 含水量(mg) 0 苹果 200 20 10 30 1 香蕉 100 50 阅读全文
posted @ 2023-09-14 13:23 郭小睿 阅读(32) 评论(0) 推荐(0)
摘要: import pandas food_info = pandas.read_csv('food_info.csv',encoding='gbk') print(type(food_info)) print(food_info.dtypes) print(help(pandas.read_csv)) 阅读全文
posted @ 2023-09-14 12:56 郭小睿 阅读(64) 评论(0) 推荐(0)
摘要: import numpy as np a = np.arange(3) print(a) [0 1 2] print(np.exp(a)) # 指数运算 e^0 e^1 e^2 [1. 2.71828183 7.3890561 ] print(np.sqrt(a)) # 计算每个元素的平方根 [0. 阅读全文
posted @ 2023-09-14 00:36 郭小睿 阅读(39) 评论(0) 推荐(0)
摘要: import numpy as np print(np.arange(15)) a = np.arange(15).reshape(5,3) # 矩阵重组 print(a) [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14] [[ 0 1 2] [ 3 4 5] [ 6 7 阅读全文
posted @ 2023-09-13 00:13 郭小睿 阅读(34) 评论(0) 推荐(0)
摘要: import numpy world_alcohol=numpy.genfromtxt('world_alcohol.txt',delimiter=",",dtype=str,encoding='utf-8') print(type(world_alcohol)) <class 'numpy.nda 阅读全文
posted @ 2023-09-13 00:11 郭小睿 阅读(38) 评论(0) 推荐(0)
摘要: import numpy vector = numpy.array(["1","2","3"]) print(vector) print(vector.dtype) vector = vector.astype(float) #类型转换 print(vector) print(vector.dtyp 阅读全文
posted @ 2023-09-13 00:08 郭小睿 阅读(17) 评论(0) 推荐(0)
摘要: 集成开发环境 Anaconda Anaconda Prompt Jupyter Notebook Anaconda Prompt # 查看环境已经安装的库 conda list Jupyter Notebook 设置工作目录 打开anaconda prompt ,输入jupyter notebook 阅读全文
posted @ 2023-09-13 00:02 郭小睿 阅读(34) 评论(0) 推荐(0)
摘要: postgreSQL 操作 教程 https://blog.csdn.net/dujidan/article/details/128862899 说说PostgreSql手动分区与自动分区 https://www.jianshu.com/p/4c89951bf119 PostgreSQL 11中分区 阅读全文
posted @ 2023-09-09 10:54 郭小睿 阅读(20) 评论(0) 推荐(0)
上一页 1 2 3 4 5 6 7 8 9 ··· 11 下一页