深入源码分析之LinkedList
1. 概览
LinkedList 底层是基于双向链表实现的,也是实现了 List 接口,所以也拥有 List 的一些特点 (JDK1.7/8 之后取消了循环,修改为双向链表) 。
LinkedList 同时实现了 List 接口和 Deque 接口,也就是说它既可以看作一个顺序容器,又可以看作一个队列(Queue),同时又可以看作一个栈(Stack)。这样看来, LinkedList 简直就是个全能冠军。当你需要使用栈或者队列时,可以考虑使用 LinkedList ,一方面是因为 Java 官方已经声明不建议使用 Stack 类,更遗憾的是,Java里根本没有一个叫做 Queue 的类(它是个接口名字)。
关于栈或队列,现在的首选是 ArrayDeque,它有着比 LinkedList (当作栈或队列使用时)有着更好的性能。
基于双向链表实现,内部使用 Node 来存储链表节点信息。
private static class Node<E> { E item; Node<E> next; Node<E> prev; }
每个链表存储了 Head 和 Tail 指针:
transient Node<E> first; transient Node<E> last;
LinkedList 的实现方式决定了所有跟下标相关的操作都是线性时间,而在首段或者末尾删除元素只需要常数时间。为追求效率LinkedList没有实现同步(synchronized),如果需要多个线程并发访问,可以先采用 Collections.synchronizedList()方法对其进行包装。
2. add()
add() 方法有两个版本,一个是 add(E e),该方法在 LinkedList 的末尾插入元素,因为有 last 指向链表末尾,在末尾插入元素的花费是常数时间。只需要简单修改几个相关引用即可;另一个是 add(int index, E element),该方法是在指定下表处插入元素,需要先通过线性查找找到具体位置,然后修改相关引用完成插入操作。
// JDK 1.8 public boolean add(E e) { linkLast(e); return true; } /** * Links e as last element. */ void linkLast(E e) { final Node<E> l = last; final Node<E> newNode = new Node<>(l, e, null); last = newNode; if (l == null) first = newNode; else l.next = newNode; size++; modCount++; }
add(int index, E element) 的逻辑稍显复杂,可以分成两部分
-
先根据 index 找到要插入的位置;
-
修改引用,完成插入操作。
public void add(int index, E element) { checkPositionIndex(index); if (index == size) linkLast(element); else linkBefore(element, node(index)); } private void checkPositionIndex(int index) { if (!isPositionIndex(index)) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); }
上面代码中的 node(int index) 函数有一点小小的 trick,因为链表双向的,可以从开始往后找,也可以从结尾往前找,具体朝那个方向找取决于条件 index < (size >> 1),也即是 index 是靠近前端还是后端。
3. remove()
remove() 方法也有两个版本,一个是删除跟指定元素相等的第一个元素 remove(Object o),另一个是删除指定下标处的元素 remove(int index)。
两个删除操作都要:
- 先找到要删除元素的引用;
- 修改相关引用,完成删除操作。
在寻找被删元素引用的时候 remove(Object o) 调用的是元素的 equals 方法,而 remove(int index) 使用的是下标计数,两种方式都是线性时间复杂度。在步骤 2 中,两个 revome() 方法都是通过 unlink(Node<E> x) 方法完成的。这里需要考虑删除元素是第一个或者最后一个时的边界情况。
4. get()
public E get(int index) { checkElementIndex(index); return node(index).item; } Node<E> node(int index) { // assert isElementIndex(index); if (index < (size >> 1)) { Node<E> x = first; for (int i = 0; i < index; i++) x = x.next; return x; } else { Node<E> x = last; for (int i = size - 1; i > index; i--) x = x.prev; return x; } }
由此可以看出是使用二分查找来看 index 离 size 中间距离来判断是从头结点正序查还是从尾节点倒序查。
- node() 会以
O(n/2)的性能去获取一个结点- 如果索引值大于链表大小的一半,那么将从尾结点开始遍历
这样的效率是非常低的,特别是当 index 越接近 size 的中间值时。
5. 总结
- LinkedList 插入,删除都是移动指针效率很高。
- 查找需要进行遍历查询,效率较低。
6. ArrayList 与 LinkedList
- ArrayList 基于动态数组实现,LinkedList 基于双向链表实现;
- ArrayList 支持随机访问,LinkedList 不支持;
- LinkedList 在任意位置添加删除元素更快。




浙公网安备 33010602011771号