实验5:开源控制器实践——POX
生成拓扑:
点击查看代码
sudo mn --topo=single,3 --mac --controller=remote,ip=127.0.0.1,port=6633 --switch ovsk,protocols=OpenFlow10
阅读Hub模块代码,使用 tcpdump 验证Hub模块;
打开POX-HUB
点击查看代码
./pox.py log.level --DEBUG forwarding.hub
点击查看代码
mininet> xterm h1 h2 h3
点击查看代码
tcpdump -nn -i h2-eth0
tcpdump -nn -i h3-eth0
阅读L2_learning模块代码,画出程序流程图,使用 tcpdump 验证Switch模块。
打开POX-switch
点击查看代码
./pox.py log.level --DEBUG forwarding.l2_learning
点击查看代码
tcpdump -nn -i h2-eth0
tcpdump -nn -i h3-eth0
h1 ping h3:
程序流程图:
(二)进阶要求
1.重新搭建(一)的拓扑,此时交换机内无流表规则,拓扑内主机互不相通;编写Python程序自定义一个POX模块SendFlowInSingle3,并且将拓扑连接至SendFlowInSingle3(默认端口6633),实现向s1发送流表规则使得所有主机两两互通。
重新搭建(一)的拓扑:
点击查看代码
sudo mn --topo=single,3 --mac --controller=remote,ip=127.0.0.1,port=6633 --switch ovsk,protocols=OpenFlow10
点击查看代码
from pox.core import core
import pox.openflow.libopenflow_01 as of
from pox.lib.util import dpid_to_str, str_to_dpid
from pox.lib.util import str_to_bool
import time
from pox.openflow.of_json import *
def _handle_ConnectionUp(event):
# 发往10.0.0.1的数据流将会从交换机的端口1转发进来/交换机的端口1/2转发出去
msg = of.ofp_flow_mod()
msg.priority = 1
msg.match.in_port = 1
msg.actions.append(of.ofp_action_output(port = 1))
msg.actions.append(of.ofp_action_output(port = 2))
msg.actions.append(of.ofp_action_output(port = 3))
event.connection.send(msg)
# 发往10.0.0.2的数据流将会从交换机的端口2转发进来/交换机的端口1/3转发出去
msg = of.ofp_flow_mod()
msg.priority = 1
msg.match.in_port = 2
msg.actions.append(of.ofp_action_output(port = 1))
msg.actions.append(of.ofp_action_output(port = 2))
msg.actions.append(of.ofp_action_output(port = 3))
event.connection.send(msg)
# 发往10.0.0.3的数据流将会从交换机的端口3转发进来/交换机的端口1/2转发出去
msg = of.ofp_flow_mod()
msg.priority = 1
msg.match.in_port = 3
msg.actions.append(of.ofp_action_output(port = 3))
msg.actions.append(of.ofp_action_output(port = 2))
msg.actions.append(of.ofp_action_output(port = 1))
event.connection.send(msg)
def launch():
core.openflow.addListenerByName("ConnectionUp", _handle_ConnectionUp)
2.基于进阶1的代码,完成ODL实验的硬超时功能。
点击查看代码
from pox.core import core
import pox.openflow.libopenflow_01 as of
from pox.lib.util import dpid_to_str, str_to_dpid
from pox.lib.util import str_to_bool
import time
from pox.openflow.of_json import *
def _handle_ConnectionUp(event):
# 发往10.0.0.1的数据流将会从交换机的端口1转发进来/交换机的端口2/3转发出去
msg = of.ofp_flow_mod()
msg.priority = 1
msg.match.in_port = 1
msg.hard_timeout = 10
msg.actions.append(of.ofp_action_output(port = 1))
msg.actions.append(of.ofp_action_output(port = 2))
msg.actions.append(of.ofp_action_output(port = 3))
event.connection.send(msg)
# 发往10.0.0.2的数据流将会从交换机的端口2转发进来/交换机的端口1/3转发出去
msg = of.ofp_flow_mod()
msg.priority = 1
msg.match.in_port = 2
msg.actions.append(of.ofp_action_output(port = 1))
msg.actions.append(of.ofp_action_output(port = 2))
msg.actions.append(of.ofp_action_output(port = 3))
event.connection.send(msg)
# 发往10.0.0.3的数据流将会从交换机的端口3转发进来/交换机的端口1/2转发出去
msg = of.ofp_flow_mod()
msg.priority = 1
msg.match.in_port = 3
msg.actions.append(of.ofp_action_output(port = 3))
msg.actions.append(of.ofp_action_output(port = 2))
msg.actions.append(of.ofp_action_output(port = 1))
event.connection.send(msg)
def launch():
core.openflow.addListenerByName("ConnectionUp", _handle_ConnectionUp)
个人总结:
实验难度个人觉得较于之前的要更难,基础要求中使用tcpdump来检查端口转发比较简单,在拓扑生成之后启用hub/swich之后xtrem打开终端之后调用即可
程序流图通过上网查询也可以基本了解,但进阶要求比较困难PDF中下发流表是定义IP地址,但在不修改时调用会报错,IPADDr没定义,msg.match.dl_type也没定义
后面讲IP地址改为进出端口就可以实现下发流表,实现硬超时可以通过定义msg.hard_timeout 函数