线程优点:
(1)线程创建和切换速度更快:进程的上下文复杂而庞大。其复杂性主要来自管理进程映像的需要。例如,在具有虚拟内存的系统中。进程映像可能由叫作页面的许多内存单元组成。在执行过程中。有些页面在内存中,有些则不在内存中。操作系统内核必须使用多个页表和多个级别的硬件辅助来跟踪每个进程的页面,要想创建新的进程,操作系统必须为进 程分配内存并构建页表。若要在某个进程中创建线程,操作系统不必为新的线程分配内存和创建页表,因为线程与进程共用同一个地址空间。所以,创建线程比创建进程更快。另外,由于以下原因,线程切换比进程切换更快。进程切换涉及将一个进程的复杂分贞环境 替换为另一个进程的复杂分页环境,需要大量的操作和时间。相比之下,同一个进程中的线程切换要简单得多、也快得多,因为操作系统内核只需要切换执行点,而不需要更改进程映像。

(2)线程的响应速度更快:一个进程只有一个执行路径。当某个进程被挂起时,整个进程都将停止执行。相反,当某个线程被挂起时,同进程中的其他线程可以继续执行。这使得有多个线程的程序响应速度更快.例如,在一个多线程的进程中,当一个线程被阻塞以等待I/O时,其他线程仍可在后台进行计算。在有线程的服务器中,服务器可同时服务多个客户机。

(3)线程更适合并行计算:并行计算的目标是使用多个执行路径更快地解决问题。基于分治原则(如二叉树查找和快速排序等)的算法经常表现出高度的并行性,可通过使用并行或并发执行来提高计算速度。这种算法通常要求执行实体共享公用数据。在进程模型中,各进程不能有效共享数据,因为它们的地址空间都不一样。为了解决这个问题,进程必须使用进程间通信(IPC)来交换数据或使用其他方法将公用数据区包含到其地址空间中。相反,同一进程中的所有线程共享同一地址空间中的所有(全局)数据。因此,使用线程编写并行执行的程序比使用进程编写更简单、更自然。

线程缺点:(1)由于地址空间共享,线程需要来自用户的明确同步。

(2)许多库函数可能对线程不安全,例如传统strtok()函数将一个字符串分成一连串令 牌。通常,任何使用全局变量或依赖于静态内存内容的函数.线程都不安全。为了使库函数 适应线程环境,还需要做大量的工作。

(3)在单CPU系统上,使用线程解决问题实际上要比使用顺序程序慢,这是由在运行 时创建线程和切换上下文的系统开销造成的。

线程创建:
使用pthread_create()函数创建线程。
int prhread_create (pthread_t *pthread_id,pthread_attr_t *attr,
Void (func)(void *), void *arg);
如果成功则返回0,如果失败则返回错误代码。其中,attr参数最复杂。下面给出了attr参数的使用步骤。
定义一个pthread属性变量 pthread_attr_t attr。
用pthread_attr_init(&attr)初始化属性变量。
设置属性变量并在 pthread_create()调用中使用。
必要时,通过 pthread_attr_destroy(&attr)释放 attr资源。

线程ID:
线程ID是一种不透明的数据类型,取决于实现情况。因此,不应该直接比较线程ID。如果需要,可以使用pthread_equal()函数对线程ID进行比较。
int pthread_equal (pthread_t t1, pthread_t t2);
如果是不同的线程,则返回0,否则返回非0。

线程终止:
线程函数结束后,线程即终止。或者,线程可以调用函数
int pthread_exit (void *status);
进行显示终止,其中状态是线程的退出状态。通常,0退出值表示正常终止,非0只表示异常终止。

线程连接:
一个线程可以等待另一个线程的终止,通过:
int pthread_join (pthread_t thread,void **status_ptr);
终止线程退出状态以status_ptr返回。
线程同步
当多个线程试图修改同一共享变量或数据结构时,如果修改结果取决于线程的执行顺序,则称之为竞态条件
在并发程序中,绝不能有竞态条件。否则,觉果可能不一致。
并发执行的线程通常需要相互协作,防止出现竞态条件,线程需要同步。

互斥量
在 Pthread中,锁被称为互斥量,意思是相互排斥。互斥变呈是用 ptbread_mutex_t 类型声明的在使,用之前必须对它们进行初始化。有两种方法可以初始化互斥址。

静态方法:
pthreaa—mutex_t m = PTHREAD_MUTEX_INITIALIZER;
定义互斥量 m, 并使用默认属性对其进行初始化。

动态方法,使用 pthread_ mutex _init()函数

线程通过互斥量来保护共享数据对象
线程同步的几种方式:

互斥锁(mutex)
条件变量(condition)
读写锁(reader-writer lock)
信号量(semphore)
互斥量
(1)互斥量
静态方法:
pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER
定义互斥量m,并使用默认属性对其进行初始化。
动态方法:使用pthread_mutex_init()函数,可通过attr参数设置互斥属性。
pthread_mutex_init(pthread_mutex_t m,pthread_mutexattr_t,attr);
(2)死锁预防
有多种方法可以解决可能的死锁问题,其中包括死锁预防、死锁规避、死锁检测和恢复等。在实际系统中,唯一可行的方法是死锁预防,试图在设计并行算法时防止死锁的发生。一种简单的死锁预防方法是对互斥量进行排序,并确保每个线程只在一个方向请求互斥量,这样请求序列中就不会有循环。
但是,仅使用单向加锁请求来设计每个并行算法是不可能的。在这种情况下,可以使用条件加锁函数 pthread mutex trylock(来预防死锁。如果互斥量已被加锁,则 trylock(函数会立即返回一个错误。在这种情况下,调用线程可能会释放它已经获取的一些互斥量以便进行退避,从而让其他线程继续执行。在上面的交叉加锁示例中,我们可以重新设计其中一个线程,
避免死锁-利用银行家算法避免死锁。
(3)信号量
信号量是进程同步的一般机制。(计数)信号量是一种数据结构
struct sem{
int value; //semaphore(counter) value;
struct process *queue // a queue of blocked processes
}s;
在使用信号量之前,必须使用一个初始值和一个空等待队列进行初始化。不论是什么硬件平台,即无论是在单 CPU 系统还是多处理器系统上,信号量的低级实现保证了每次只能由一个执行实体操作每个信号量,并且从执行实体的角度来看,对信号量的操作都是(不可分割的)原子操作或基本操作。读者可以忽略这些细节,将重点放在信号量的高级操作及其作为进程同步机制的使用上。
(4)屏障
线程连接操作允许某线程(通常是主线程)等待其他线程终止。在等待的所有线程都终上后,主线程可创建新线程来继续执行并行程序的其余部分。创建新线程需要系统开销。在某些情况下,保持线程活动会更好,但应要求它们在所有线程都达到指定同步点之前不能继活动。在 Pthreads 中,可以采用的机制是屏障以及一系列屏障函数。首先,主线程创建一个屏障对象
pthread_barrier_t barrieri
并且调用
pthread_barrier_init(&barrier NULL,nthreads);
用屏障中同步的线程数字对它进行初始化。然后,主线程创建工作线程来执行任务。工作线程使用
pthread_barrier_wait( &barrier)
在屏障中等待指定数量的线程到达屏障。当最后一个线程到达屏障时,所有线程重新开始执行。