Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2.
解析:
本题相对于Unique Paths的难点在于矩阵的初始化,这里将数据为1所对应到dp[]][]矩阵中所对应位置的数据置0即可。
public class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
int m=obstacleGrid.length;
int n=obstacleGrid[0].length;
if(m==0||n==0)
return 0;
int[][] dp=new int[m+1][n+1];
if(obstacleGrid[0][0]!=1)
{
dp[1][1]=1;
}
for(int i=2;i<=m;i++)
{
if(obstacleGrid[i-1][0]!=1&&dp[i-1][1]!=0)
dp[i][1]=1;
}
for(int j=2;j<=n;j++)
{
if(obstacleGrid[0][j-1]!=1&&dp[1][j-1]!=0)
dp[1][j]=1;
}
for(int i=2;i<=m;i++)
{
for(int j=2;j<=n;j++)
{
if(obstacleGrid[i-1][j-1]!=1)
dp[i][j]=dp[i-1][j]+dp[i][j-1];
}
}
return dp[m][n];
}
}
浙公网安备 33010602011771号