python and CSharp: Essential Algorithms
python:
# encoding: utf-8
# 版权所有 2023 涂聚文有限公司
# 许可信息查看:
# 描述:
# Author : geovindu,Geovin Du 涂聚文.
# IDE : PyCharm 2023.1 python 311
# Datetime : 2023/9/21 21:28
# User : geovindu
# Product : PyCharm
# Project : EssentialAlgorithms
# File : DrawingTwo.py
# explain : 学习
import tkinter as tk
import tkinter.font as tk_font
import math
class DrawingCanvasTwo(object):
"""
A canvas drawing manager.
"""
def __init__(self, canvas, wxmin, wymin, wxmax, wymax, dmargin, y_is_flipped):
"""
:param canvas:
:param wxmin:
:param wymin:
:param wxmax:
:param wymax:
:param dmargin:
:param y_is_flipped:
"""
self.canvas = canvas
self.wxmin = wxmin
self.wymin = wymin
self.wxmax = wxmax
self.wymax = wymax
self.dmargin = dmargin
self.y_is_flipped = y_is_flipped
self.set_scales()
def set_scales(self):
"""
Calculate scale parameters for the canvas's current size.
:return:
"""
self.canvas.update()
self.dxmin = self.dmargin
self.dymin = self.dmargin
self.dxmax = self.canvas.winfo_width() - self.dmargin - 1
self.dymax = self.canvas.winfo_height() - self.dmargin - 1
# Flip the Y coordinates to invert the result.
if self.y_is_flipped:
self.dymin, self.dymax = self.dymax, self.dymin
self.xscale = (self.dxmax - self.dxmin) / (self.wxmax - self.wxmin)
self.yscale = (self.dymax - self.dymin) / (self.wymax - self.wymin)
# Calculate 1 pixel in world coordinates.
self.xpix = 1 / self.xscale
self.ypix = 1 / self.yscale
def w_to_d(self, wx, wy):
"""
Map a point from world to device coordinates.
:param wx:
:param wy:
:return:
"""
dx = (wx - self.wxmin) * self.xscale + self.dxmin
dy = (wy - self.wymin) * self.yscale + self.dymin
return dx, dy
def clear(self):
"""
:return:
"""
self.canvas.delete(tk.ALL)
def wdraw_line(self, wx0, wy0, wx1, wy1, color, arrow):
"""
Draw a line in world coordinates.
:param wx0:
:param wy0:
:param wx1:
:param wy1:
:param color:
:param arrow:
:return:
"""
dx0, dy0 = self.w_to_d(wx0, wy0)
dx1, dy1 = self.w_to_d(wx1, wy1)
self.canvas.create_line(dx0, dy0, dx1, dy1, fill=color, arrow=arrow)
def wdraw_axes(self, xtic_spacing, ytic_spacing, tic_hgt, tic_wid, do_draw_text, color):
"""
Draw coordinate axes.
:param xtic_spacing:
:param ytic_spacing:
:param tic_hgt:
:param tic_wid:
:param do_draw_text:
:param color:
:return:
"""
self.wdraw_line(self.wxmin, 0, self.wxmax, 0, color, arrow=tk.BOTH)
self.wdraw_line(0, self.wymin, 0, self.wymax, color, arrow=tk.BOTH)
startx = xtic_spacing * int((self.wxmin + xtic_spacing) / xtic_spacing)
x = startx
while x < self.wxmax:
if (abs(x) > 0.01):
dx0, dy0 = self.w_to_d(x, tic_hgt)
dx1, dy1 = self.w_to_d(x, -tic_hgt)
self.canvas.create_line(dx0, dy0, dx1, dy1, fill=color)
if do_draw_text:
self.canvas.create_text(dx1, dy1, text=str(x), fill=color, anchor=tk.N)
x += xtic_spacing
starty = ytic_spacing * int((self.wymin + ytic_spacing) / ytic_spacing)
y = starty
while y < self.wymax:
if (abs(y) > 0.01):
dx0, dy0 = self.w_to_d(tic_wid, y)
dx1, dy1 = self.w_to_d(-tic_wid, y)
self.canvas.create_line(dx0, dy0, dx1, dy1, fill=color)
if do_draw_text:
self.canvas.create_text(dx1, dy1, text=str(y), fill=color, anchor=tk.E)
y += ytic_spacing
def wdraw_polyline(self, wcoords, color):
"""
Draw a connected series of points in world coordinates.
:param wcoords:
:param color:
:return:
"""
dpoints = []
for i in range(0, len(wcoords), 2):
dpoints += self.w_to_d(wcoords[i], wcoords[i+1])
self.canvas.create_line(dpoints, fill=color)
def wdraw_rotated_text(self, wx, wy, text, angle, color, font):
"""
Draw a rotated text at the indicated position in world coordinates.
:param wx:
:param wy:
:param text:
:param angle:
:param color:
:param font:
:return:
"""
dx, dy = self.w_to_d(wx, wy)
self.canvas.create_text(dx, dy, text=text, angle=angle, fill=color, font=font)
def wdraw_function(self, func, color, wxmin, wxmax, step_x):
"""
Draw a function.
:param func:
:param color:
:param wxmin:
:param wxmax:
:param step_x:
:return:
"""
points = []
x = wxmin
while x <= wxmax:
points.append(x)
points.append(func(x))
x += step_x
self.wdraw_polyline(points, color)
def log_x(x):
"""
:param x:
:return:
"""
return math.log(x, 2)
def sqrt_x(x):
"""
:param x:
:return:
"""
return 1.5 * math.sqrt(x)
def identity_x(x):
"""
:param x:
:return:
"""
return x
def x2(x):
"""
:param x:
:return:
"""
return x * x / 5
def two_to_the_x(x):
"""
:param x:
:return:
"""
return math.pow(2, x) / 10
def factorial_n(n):
"""
:param n:
:return:
"""
result = 1
for i in range(2, n + 1):
result *= i
return result / 100
def fibonacci_n(n):
"""
:param n:
:return:
"""
if n == 0:
return 0
fib_minus2 = 0
fib_minus1 = 1
fib = 1
for i in range(2, n + 1):
fib = fib_minus1 + fib_minus2
fib_minus2 = fib_minus1
fib_minus1 = fib
return fib / 10
# encoding: utf-8
# 版权所有 2023 涂聚文有限公司
# 许可信息查看:
# 描述:
# Author : geovindu,Geovin Du 涂聚文.
# IDE : PyCharm 2023.1 python 311
# Datetime : 2023/9/21 21:29
# User : geovindu
# Product : PyCharm
# Project : EssentialAlgorithms
# File : Chapter03.py
# explain : 学习
import tkinter as tk
import tkinter.font as tk_font
import math
import ChapterOne.DrawingTwo
class Ch03App(object):
"""
"""
def __init__(self):
"""
"""
self.window = tk.Tk()
self.window.title("runtime_functions")
self.window.protocol("WM_DELETE_WINDOW", self.kill_callback)
self.window.geometry("570x570")
# Make a slightly bigger label font.
self.label_font = tk_font.Font(family="Times New Roman", size=14)
# Canvas.
self.canvas = tk.Canvas(self.window, width=550, height=550,
relief=tk.RIDGE, bd=5, highlightthickness=0, bg="white")
self.canvas.xview("moveto", 5) # Move out from the border.
self.canvas.yview("moveto", 5)
self.canvas.grid(row=1, column=0, columnspan=4, padx=5, pady=5)
# Make the DrawingCanvas.
self.drawing_canvas = ChapterOne.DrawingTwo.DrawingCanvasTwo(self.canvas, -1, -1, 21, 21, 20, True)
# Draw the scene.
self.draw_scene()
# Force focus so Alt+F4 closes this window and not the Python shell.
self.window.focus_force()
self.window.mainloop()
def kill_callback(self):
"""
:return:
"""
self.window.destroy()
def draw_scene(self):
"""
Draw the scene."
:return:
"""
self.drawing_canvas.clear()
# Draw the curves.
wxmin = self.drawing_canvas.wxmin
wxmax = self.drawing_canvas.wxmax
xpix = self.drawing_canvas.xpix
self.drawing_canvas.wdraw_function(ChapterOne.DrawingTwo.log_x, "blue", 0.5, wxmax, xpix)
self.drawing_canvas.wdraw_function(ChapterOne.DrawingTwo.sqrt_x, "green", 0, wxmax, xpix)
self.drawing_canvas.wdraw_function(ChapterOne.DrawingTwo.identity_x, "black", 0, wxmax, xpix)
self.drawing_canvas.wdraw_function(ChapterOne.DrawingTwo.x2, "orange", 0, wxmax, xpix)
self.drawing_canvas.wdraw_function(ChapterOne.DrawingTwo.two_to_the_x, "magenta", 0, wxmax, xpix)
self.drawing_canvas.wdraw_function(ChapterOne.DrawingTwo.fibonacci_n, "blue", 0, 20, 1)
self.drawing_canvas.wdraw_function(ChapterOne.DrawingTwo.factorial_n, "red", 0, 10, 1)
self.drawing_canvas.wdraw_rotated_text(15, 4.5, "y = Log(x)", 6, "blue", self.label_font)
self.drawing_canvas.wdraw_rotated_text(15, 6.5, "y = 1.5 * Sqrt(x)", 11, "green", self.label_font)
self.drawing_canvas.wdraw_rotated_text(13, 14, "y = x", 45, "black", self.label_font)
self.drawing_canvas.wdraw_rotated_text(8.75, 17, "y = x^2 / 5", 75, "orange", self.label_font)
self.drawing_canvas.wdraw_rotated_text(7, 17.5, "y = 2x / 10", 85, "magenta", self.label_font)
self.drawing_canvas.wdraw_rotated_text(5.5, 18, "y = x! / 100", 88, "red", self.label_font)
self.drawing_canvas.wdraw_rotated_text(11.5, 16, "y = Fibonacci(x) / 10", 83, "blue", self.label_font)
# Draw the axes.
self.drawing_canvas.wdraw_axes(5, 5, 0.2, 0.2, True, "gray")
调用:
# encoding: utf-8
# 版权所有 2023 涂聚文有限公司
# 许可信息查看:
# 描述:https://www.wiley.com/en-us/Essential+Algorithms%3A+A+Practical+Approach+to+Computer+Algorithms+Using+Python+and+C%23%2C+2nd+Edition-p-9781119575993
# 算法基础:Python和C#语言实现(原书第2版)
# Author : geovindu,Geovin Du 涂聚文.
# IDE : PyCharm 2023.1 python 311
# Datetime : 2023/9/21 21:03
# User : geovindu
# Product : PyCharm
# Project : EssentialAlgorithms
# File : main.py
# explain : 学习
import os
import sys
import ChapterOne.Chapter01
def print_hi(name):
# Use a breakpoint in the code line below to debug your script.
print(f'Hi, {name}') # Press Ctrl+F8 to toggle the breakpoint.
# Press the green button in the gutter to run the script.
if __name__ == '__main__':
print_hi('PyCharm,涂聚文 Geovin Du')
# 第一章
#app=ChapterOne.Chapter01.ch01App()
#app=ChapterOne.Chapter02.Ch02App()
app=ChapterOne.Chapter03.Ch03App()
# See PyCharm help at https://www.jetbrains.com/help/pycharm/
输出:

CSharp:
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;
using System.Drawing.Drawing2D;
namespace RuntimeFunctions
{
/// <summary>
///
/// </summary>
public partial class Form1 : Form
{
/// <summary>
///
/// </summary>
public Form1()
{
InitializeComponent();
}
/// <summary>
///
/// </summary>
private bool drawFibonacci = true;
/// <summary>
///
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
private void graphPictureBox_Paint(object sender, PaintEventArgs e)
{
// Compare the two methods for calculating the Fibonacci function.
for (int i = 0; i < 20; i++)
{
Console.WriteLine(Fibonacci(i) + " = " + Fibonacci2(i));
}
const bool useColor = true;
DrawGraph(e.Graphics, -0.75f, 20.5f, -0.75f, 20.5f, 1, 1, useColor);
}
/// <summary>
///
/// </summary>
/// <param name="gr"></param>
/// <param name="xmin"></param>
/// <param name="xmax"></param>
/// <param name="ymin"></param>
/// <param name="ymax"></param>
/// <param name="ticDx"></param>
/// <param name="ticDy"></param>
/// <param name="useColor"></param>
private void DrawGraph(Graphics gr, float xmin, float xmax, float ymin, float ymax, int ticDx, int ticDy, bool useColor)
{
gr.SmoothingMode = SmoothingMode.AntiAlias;
// Scale to fit.
RectangleF rect = new RectangleF(xmin, ymin, xmax - xmin, ymax - ymin);
PointF[] pts =
{
new PointF(0, graphPictureBox.ClientSize.Height),
new PointF(graphPictureBox.ClientSize.Width, graphPictureBox.ClientSize.Height),
new PointF(0, 0),
};
Matrix transform = new Matrix(rect, pts);
gr.Transform = transform;
// Get a unit in X and Y directions.
pts = new PointF[] { new PointF(0, 0), new PointF(1, 1) };
Matrix inverse = transform.Clone();
inverse.Invert();
inverse.TransformPoints(pts);
float dx = pts[1].X - pts[0].X;
float dy = pts[1].Y - pts[0].Y;
using (Pen thinPen = new Pen(Color.Black, 0))
{
// Draw axes.
gr.DrawLine(thinPen, xmin, 0, xmax, 0);
for (int x = 0; x <= xmax; x += ticDx)
{
gr.DrawLine(thinPen, x, -4 * dy, x, 4 * dy);
}
gr.DrawLine(thinPen, 0, ymin, 0, ymax);
for (int y = 0; y <= ymax; y += ticDx)
{
gr.DrawLine(thinPen, -4 * dx, y, 4 * dx, y);
}
// Draw curves.
List<PointF> points = new List<PointF>();
// Log(X).
points = new List<PointF>();
for (float x = dx; x <= xmax; x += dx)
{
float y = (float)Math.Log(x, 2);
if (float.IsInfinity(y) || float.IsNaN(y)) break;
points.Add(new PointF(x, y));
}
if (useColor) thinPen.Color = Color.Blue;
gr.DrawLines(thinPen, points.ToArray());
// 1.5 * Sqrt(X).
points = new List<PointF>();
for (float x = 0; x <= xmax; x += dx)
{
float y = 1.5f * (float)Math.Sqrt(x);
if (float.IsInfinity(y) || float.IsNaN(y)) break;
points.Add(new PointF(x, y));
}
if (useColor) thinPen.Color = Color.Green;
gr.DrawLines(thinPen, points.ToArray());
// X.
points = new List<PointF>();
points.Add(new PointF(xmin, xmin));
points.Add(new PointF(xmax, xmax));
if (useColor) thinPen.Color = Color.Black;
gr.DrawLines(thinPen, points.ToArray());
// X * X / 5.
points = new List<PointF>();
for (float x = 0; x <= xmax; x += dx)
{
float y = x * x / 5;
if (float.IsInfinity(y) || float.IsNaN(y)) break;
points.Add(new PointF(x, y));
}
if (useColor) thinPen.Color = Color.Orange;
gr.DrawLines(thinPen, points.ToArray());
// 2^X / 10.
points = new List<PointF>();
for (float x = 0; x <= xmax; x += dx)
{
float y = (float)Math.Pow(2, x) / 10;
if (float.IsInfinity(y) || float.IsNaN(y)) break;
points.Add(new PointF(x, y));
if (y > ymax) break;
}
if (useColor) thinPen.Color = Color.Fuchsia;
gr.DrawLines(thinPen, points.ToArray());
// X! / 100.
points = new List<PointF>();
for (int x = 0; x <= xmax; x++)
{
float y = (float)Factorial(x) / 100;
if (float.IsInfinity(y) || float.IsNaN(y)) break;
points.Add(new PointF(x, y));
if (y > ymax) break;
}
if (useColor) thinPen.Color = Color.Red;
gr.DrawLines(thinPen, points.ToArray());
// Fibonacci(X) / 10.
if (drawFibonacci)
{
points = new List<PointF>();
for (int x = 0; x <= xmax; x++)
{
float y = (float)Fibonacci(x) / 10;
if (float.IsInfinity(y) || float.IsNaN(y)) break;
points.Add(new PointF(x, y));
if (y > ymax) break;
}
if (useColor) thinPen.Color = Color.Blue;
gr.DrawLines(thinPen, points.ToArray());
}
}
// Label the axes.
gr.TextRenderingHint = System.Drawing.Text.TextRenderingHint.AntiAliasGridFit;
gr.ResetTransform();
using (Font font = new Font(FontFamily.GenericSansSerif, 14, FontStyle.Regular))
{
using (StringFormat sf = new StringFormat())
{
const int skip = 5;
// X axis.
sf.Alignment = StringAlignment.Center;
sf.LineAlignment = StringAlignment.Near;
for (int x = skip; x <= xmax; x += skip)
{
pts = new PointF[] { new PointF(x, 0) };
transform.TransformPoints(pts);
gr.DrawString(x.ToString(), font, Brushes.Black, pts[0], sf);
}
// Y axis.
sf.Alignment = StringAlignment.Far;
sf.LineAlignment = StringAlignment.Center;
for (int y = skip; y <= xmax; y += skip)
{
pts = new PointF[] { new PointF(0, y) };
transform.TransformPoints(pts);
gr.DrawString(y.ToString(), font, Brushes.Black, pts[0], sf);
}
}
}
// Draw labels.
using (Font font = new Font(FontFamily.GenericSansSerif, 16, FontStyle.Regular))
{
DrawRotatedText(gr, font, Brushes.Blue, "y = Log(x)", 414, 440, -8, useColor);
DrawRotatedText(gr, font, Brushes.Green, "y = 1.5 * Sqrt(x)", 410, 390, -11, useColor);
DrawRotatedText(gr, font, Brushes.Black, "y = x", 360, 200, -45, useColor);
DrawRotatedText(gr, font, Brushes.Orange, "y = x² / 5", 242, 140, -75, useColor);
DrawRotatedText(gr, font, Brushes.Fuchsia, "y = 2ˣ / 10", 200, 135, -85, useColor);
DrawRotatedText(gr, font, Brushes.Red, "y = x! / 100", 140, 125, -90, useColor);
if (drawFibonacci)
DrawRotatedText(gr, font, Brushes.Blue, "y = Fibonacci(x) / 10", 321, 230, -83, useColor);
}
}
// Return n!
/// <summary>
///
/// </summary>
/// <param name="n"></param>
/// <returns></returns>
private double Factorial(int n)
{
double total = 1;
for (int i = 2; i <= n; i++) total *= n;
return total;
}
// Draw rotated text at the indicated position.
// Note: This method resets the Graphics object's transformation.
/// <summary>
///
/// </summary>
/// <param name="gr"></param>
/// <param name="font"></param>
/// <param name="brush"></param>
/// <param name="text"></param>
/// <param name="x"></param>
/// <param name="y"></param>
/// <param name="angle"></param>
/// <param name="useColor"></param>
private void DrawRotatedText(Graphics gr, Font font, Brush brush, string text, int x, int y, float angle, bool useColor)
{
gr.ResetTransform();
gr.RotateTransform(angle, MatrixOrder.Append);
gr.TranslateTransform(x, y, MatrixOrder.Append);
if (useColor) gr.DrawString(text, font, brush, 0, 0);
else gr.DrawString(text, font, Brushes.Black, 0, 0);
}
// Return the nth Fibonacci number.
/// <summary>
///
/// </summary>
/// <param name="n"></param>
/// <returns></returns>
private double Fibonacci(int n)
{
if (n == 0) return 0;
double fibMinus2 = 0; // Fibonacci(0)
double fibMinus1 = 1; // Fibonacci(1)
double fib = 1;
for (int i = 2; i <= n; i++)
{
fib = fibMinus1 + fibMinus2;
fibMinus2 = fibMinus1;
fibMinus1 = fib;
}
return fib;
}
// The French mathematician Abraham de Moivre discovered
// in 1718 that you can calculate the Nth like this:
// Round(phi^N / Sqrt(5)) where phi = (1 + Sqrt(5)) / 2.
/// <summary>
///
/// </summary>
/// <param name="n"></param>
/// <returns></returns>
private double Fibonacci2(int n)
{
double phi = (1 + Math.Sqrt(5)) / 2;
return Math.Round(Math.Pow(phi, n) / Math.Sqrt(5.0));
}
/// <summary>
///
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
private void Form1_Load(object sender, EventArgs e)
{
}
}
}
哲学管理(学)人生, 文学艺术生活, 自动(计算机学)物理(学)工作, 生物(学)化学逆境, 历史(学)测绘(学)时间, 经济(学)数学金钱(理财), 心理(学)医学情绪, 诗词美容情感, 美学建筑(学)家园, 解构建构(分析)整合学习, 智商情商(IQ、EQ)运筹(学)生存.---Geovin Du(涂聚文)
浙公网安备 33010602011771号