会员
众包
新闻
博问
闪存
赞助商
HarmonyOS
Chat2DB
所有博客
当前博客
我的博客
我的园子
账号设置
会员中心
简洁模式
...
退出登录
注册
登录
Loading
Geoffrey_one
管理
2019年4月19日
Random Erasing Augmentation(REA)
摘要: 为了增强模型的泛化的性能,一般的手段有数据增强和正则化方法(如dropout,BN),而用于数据增强的一般方法有:随机裁剪、随机水平翻转、平移、旋转、增加噪音和生成网络方法等(前两个方法用的最多,也最有效),作者从CNNs输入的数据预处理出发,极端的情况下,如果训练模型的数据集很少有遮挡的样本(尽管
阅读全文
posted @ 2019-04-19 13:56 Geoffrey_one
阅读(1608)
评论(0)
推荐(0)
/*
*/