跟小D每日学口语

2013年6月2日

高等代数第2讲——n元线性方程组解的情况

摘要: 在有理数(或实数,或复数)集内(这一前提还是很重要的),n元线性方程组解的情况有且只有三种情况:(1)无解;(2)唯一解;(3)无穷解。 可以通过两条直线(“直线”对应代数中的“线性”)的关系加以理解:两条直线要么平行(对应无解),要么相交(对应唯一解),要么重合(对应无穷解)。 可以通过对线性方程组的增广矩阵进行初等行变换,得到最简行阶梯矩阵,据此可以判断线性方程组解的情况。何谓初等行变换呢?把一行的倍数加到另一行现行互换一行乘以一个非0常数 何谓最简行阶梯矩阵?它的特点是:它是阶梯形矩阵每个非零行的主元都是1每个主元所在列的其余元素都是0与之对应的方程组为 上面的最简行阶梯矩阵... 阅读全文

posted @ 2013-06-02 23:25 湘厦人 阅读(5294) 评论(0) 推荐(1)

高等代数第1讲——高等代数研究对象及学习方法

摘要: 高等代数研究对象高等代数研究的出发点是n元线性方程组,而解方程需要引入重要工具——矩阵,这是解法问题决定的。如何判定解的情况呢?有解?无解?无穷解?唯一解?比如两条直接要么相交,有唯一的交点,要么平行,没有交点,要么重合,有无穷个交点,因此引入空间为判定方程组的解提供了直观解释,为此,对于n元线性方程组,有必要引入——n维向量空间,这是深入分析解的结构问题决定的,而n维向量空间可推广至一般线性空间。由于线性空间只涉及向量加和数乘,为了研究向量之间的距离、夹角等度量关系,可以通过向量的内积来计算,将两个向量映射到实数域,这和关系是双线性函数。从而将一般线性空间推广到具有度量的线性空间。空间到自身 阅读全文

posted @ 2013-06-02 15:31 湘厦人 阅读(1009) 评论(0) 推荐(0)

导航