cv_gordon

  博客园 :: 首页 :: 博问 :: 闪存 :: 新随笔 :: :: :: 管理 ::

随笔分类 -  coursera

记录网络课程的学习资料
摘要:4.1 Belief state in 2D 4.1.1 Introduction How robots can keep track of where they are in space and time using these particle filter algorithms to repr 阅读全文
posted @ 2019-01-04 01:28 cv_gordon 阅读(507) 评论(0) 推荐(0)

摘要:3.1 robotic mapping 3.1.1 Introduction 3.1.2 Introduction to mapping Map and Mapping (1) map is a spatial model of robot's environment (2) mapping is 阅读全文
posted @ 2019-01-02 17:06 cv_gordon 阅读(398) 评论(0) 推荐(0)

摘要:2.1 Motivation 2.1.1 Introduction How to track the uncertainty of estimating Dynamical Systems over time, using Kalman Filter to perform these estimat 阅读全文
posted @ 2018-12-31 22:25 cv_gordon 阅读(346) 评论(0) 推荐(0)

摘要:第一周 you learned about how to use Gaussian Models to estimate and learn from uncertain data. 第二周 we saw how to track these distributions over time in w 阅读全文
posted @ 2018-12-31 15:57 cv_gordon 阅读(468) 评论(0) 推荐(0)