hadoop与spark的处理技巧(四)推荐引擎处理技巧
经常一起购买的商品
scala> var file=sc.textFile("/user/ghj/togeterBought")
file: org.apache.spark.rdd.RDD[String] = /user/ghj/togeterBought MapPartitionsRDD[28] at textFile at <console>:25
scala> file.collect
res0: Array[String] = Array(t1 p1 p2 p3, t2 p2 p3, t3 p2 p3 p4, t4 p5 p6, t5 p3 p4)
scala> var mapFile=file.map(line=>{
| import scala.collection.mutable.ListBuffer;
| var listBuff=ListBuffer[(String,String)]();
| var list=line.split(" ").toList;
| var ll=list.takeRight(list.size-1);
| for(p1<-ll){
| for(p2<-ll){
| if(ll.indexOf(p1) != ll.indexOf(p2)){
| if(p1<p2){
| listBuff=listBuff:+((p1,p2));
| }else{
| listBuff=listBuff:+((p2,p1));
| }
| }
| }
| }
| listBuff;
| }).flatMap(x=>x).map(x=>(x,1)).reduceByKey(_+_).map(x=>(x,x._2/2));
mapFile: org.apache.spark.rdd.RDD[(String, String)] = MapPartitionsRDD[30] at flatMap at <console>:46
scala> mapFile.collect
res4: Array[(((String, String), Int), Int)] = Array((((p5,p6),2),1), (((p1,p3),2),1), (((p2,p4),2),1), (((p3,p4),4),2), (((p2,p3),6),3), (((p1,p2),2),1))