From the Newton to Lisa: Failed Apple products (cnbc.com)

The word Betamax has become almost synonymous with failure. But when it was first released, Betamax was supposed to become the leader in the cassette recording industry. Developed by Sony, Betamax was introduced in the mid-1970s but was unable to get traction in the market, where JVC’s VHS technology was king. Surprisingly, Sony continued to produce Betamax all the way into 2016. Long before it discontinued the technology, Betamax was already irrelevant.

Rumours persisted that Intel was developing a CPU codenamed "Yamhill", originally based on original 64-bit P7 plans dusted off, but then switching to the x86-64 architecture and instruction set (apparently under pressure from Microsoft to avoid creating yet another instruction set to support - ironically making Intel a follower of AMD, after driving 80x86 development from the beginning). Originally it was an unofficial project, then official when performance of the first Itanium disappointed, and K8 popularity exceeded expectations. It was finally released as an "enhanced" Pentium 4 Xeon (March 2004), despite being a new design. The 64-bit capability is designed as a 32-bit add-on (like old bit-slice processors) and is disabled in lower end versions, (much like the low-cost 80486SX FPU was disabled). When enabled, the extended 32 bit pipeline operates 1/2 clock cycle later than the main pipeline.

Itanium is a family of 64-bit Intel microprocessors that implement the Intel Itanium architecture (formerly called IA-64). Launched in June 2001, Intel marketed the processors for enterprise servers and high-performance computing systems. The Itanium architecture originated at Hewlett-Packard (HP), and was later jointly developed by HP and Intel.

Itanium-based systems have been produced by HP/Hewlett Packard Enterprise (HPE) (the HPE Integrity Servers line) and several other manufacturers. In 2008, Itanium was the fourth-most deployed microprocessor architecture for enterprise-class systems, behind x86-64, Power ISA, and SPARC. But...

In comparison with its Xeon family of server processors, Itanium has never been a high-volume product for Intel. Intel does not release production numbers. One industry analyst estimated that the production rate was 200,000 processors per year in 2007. And...

According to Gartner Inc., the total number of Itanium servers (not processors) sold by all vendors in 2007, was about 55,000. (It is unclear whether clustered servers counted as a single server or not.) This compares with 417,000 RISC servers (spread across all RISC vendors) and 8.4 million x86 servers. IDC reports that a total of 184,000 Itanium-based systems were sold from 2001 through 2007. For the combined POWER/SPARC/Itanium systems market, IDC reports that POWER captured 42% of revenue and SPARC captured 32%, while Itanium-based system revenue reached 26% in the second quarter of 2008. According to an IDC analyst, in 2007, HP accounted for perhaps 80% of Itanium systems revenue. According to Gartner, in 2008, HP accounted for 95% of Itanium sales. HP's Itanium system sales were at an annual rate of $4.4Bn at the end of 2008, and declined to $3.5Bn by the end of 2009, compared to a 35% decline in UNIX system revenue for Sun and an 11% drop for IBM, with an x86-64 server revenue increase of 14% during this period. bn. is a written abbreviation for billion.

In December 2012, IDC released a research report stating that Itanium server shipments would remain flat through 2016, with annual shipment of 26,000 systems (a decline of over 50% compared to shipments in 2008). In February 2017, Intel released the final generation, Kittson, to test customers, and in May began shipping in volume. It is used exclusively in mission-critical servers from Hewlett Packard Enterprise. In 2019, Intel announced that Itanium CPU family shipments will cease on July 29, 2021.

In June 1998, Intel created two sub-brands of P6 CPUs, low cost (Celeron) and server oriented (Xeon). They differed in amount of cache and bus speeds.

In 1998, DEC was purchased by Compaq. The transition was blamed by some with the EV6 being unable to exceed 833MHz clock speeds, while CPUs from Intel, AMD, and SiByte (MIPS) gained attention by exceeding 1GHz (Alpha performance remained near the top of the competition, but it had also previously also had the highest clock speeds). Apparently a design flaw was to blame, but rather than redesigning the existing chip, the resources were spent developing the EV7 and EV8 instead (though rumour has it Compaq parners Samsung and IBM were able to produce 1GHz Alphas in 1999, but were forbidden by Compaq because they did not have a support chip set able to handle that speed). In 2001, Compaq cancelled completion of the EV8, deciding to adopt the IA-64 instead, and sold all Alpha intellectual property (from circuits to compilers, and even the Alpha design team) to Intel, shortly before the announcement of a controversial merger with Hewlett-Packard (nasty accusations claimed it was pressure from HP, others claimed Intel was embarassed by both AMD's Athlon performance (due partly to DEC Alpha engineers who moved to AMD when Compaq bought DEC) and the Intel-designed Itanium's poor performance when compared to almost all competitors, and especially to the Itanium 2 processor designed by HP). Including the eventual completion of the EV7, the Alpha's life is effectively little more than 10 years. Mar 10, 2002 · Hewlett-Packard will acquire Compaq Computer in a stock swap worth about $25 billion.

The Cyrix 6x86 (early 1996), initially manufactured by IBM before Cyrix merged with National Semiconductor, still directly executes 80x86 instructions (in two integer and one FPU pipeline), but partly out of order, making it faster than a Pentium at the same clock speed. Cyrix also sold an integrated version with graphics and audio on-chip called the MediaGX. MMX instructions were added to the 6x86MX, and 3DNow! graphics instructions to the 6x86MXi. The M3 (mid 1998) turned to superpipelining (eleven stages compared to six (seven?) for the M2) for a higher clock rate (partly for marketing purposes, as MHz is often preferred to performance in the PC market), and was to provide dual floating point/MMX/3DNow! units. The Cyrix division of National Semiconductor was purchased by PC chipset maker Via, and the M3 was cancelled. National Semiconductor continued with the integrated Geode low-power/cost CPU.

The AMD 29000 also includes an MMU and support for the 29027 FPU. The 29030 added Harvard-style busses and caches (though oddly, instructions and data still shared the address bus). The superscalar 29050 version in 1990 integrated a redesigned FPU (executing in parallel with the integer unit), and a more superscalar version was planned but cancelled, featuring 6 functional units (two integer units, one FPU, a branch and two load/store units), allowing instructions to be dispatched out of order with register renaming and speculatively. The 29050 also added two condition code accumulators gr2 and gr3 (OR-combine instead of overwriting, like the PowerPC CCR register).

A new processor was needed to replace older 16-bit stack-based processors in HP-3000 MPE minicomputers. Initially a more complex replacement called Omega was started, but cancelled, and both Vision and Spectrum were proposed for Omega's replacement (code-named Alpha, not to be confused with the DEC Alpha). Spectrum was eventually selected, and became Precision Architecture, or PA-RISC. It also replaced Motorola 680x0 processors in the HP-9000 HP/UX Unix minicomputers and workstations.

In direct response to Intel's MMX instructions, AltiVec extensions were introduced with fourth generation (G4, September 1999) PowerPC CPUs from Motorola (IBM initially declined to support the extensions, until agreeing to become a second source of AltiVec CPUs for Apple Macintoshes). Unlike multimedia extensions which use integer (HP PA-RISC MAX) or floating point registers (Sun VIS, Intel MMX), AltiVec adds an entire new set of 128-bit registers (enough for a vector of four 32-bit floating point numbers) and a separate vector execution unit and instruction set (four operand - three source, one result), supported by the complex PowerPC branch unit. That means that operating system software needs to be modified to preserve additional CPU state information (like the MIPS MDMX which adds a 192-bit accumulator to hold intermediate results, but uses 64-bit floating point registers for data), but it allows multimedia instructions to be executed in parallel with both integer and floating point operations, and to reduce the number of registers to save, an additional register (VRSAVE) is added to track which vector registers are being used - unused registers don't need to be stored. In addition to subword vector operations, AltiVec also includes permutation operations along the same lines as PA-RISC MAX instructions, and subword floating point operations like MIPS MDMX which can also perform vector multiplication allowing 3-D graphics support (see Appendix D) like the Hitachi SH4... A very high clock rate (500MHz) BiCMOS version called the 704 (based on a simplified 604) was being developed in 1996 by Exponential Technologies, expanding on the type of technology which Intel found necessary to keep its Pentium and Pentium Pro CPUs competitive, but advances in CMOS and a slower initial product (410MHz) sharply reduced the clock speed advantages, cancelling the project (faster, lower power, fully CMOS Pentium and Pentium Pro CPUs have replaced earlier BiCMOS versions). IBM went so far as to produce a 1GHz integer-only demonstration version of a CMOS PowerPC, and used the PowerPC as the first product to replace aluminum conductors with lower resistance copper, boosting clock speeds by about 33%.

Sun MAJC... Interest in Java processors did not materialise - language specific processors have traditionally been poorly received except in specific applications, and techniques to translate Java bytecodes to native CPU instructions meant conventional CPUs could execute Java as fast or faster than Java-specific processors. After the introduction of the picoJava and microJava, the UltraJava was apparently cancelled - the design program instead mutated into the MAJC design, though Java still had a strong influence in the design (MAJC stands for Microprocessor Architecture for Java Computing).

Transmeta Crusoe... In the early 1990s, Apple decided that the Motorola 680x0 series was not keeping up with the Intel 80x86 series, largely because PCs were Intel's primary market, while Motorola CPUs were used more in embedded systems. RISC designs were simpler and could be improved with less effort, so Apple switched to the PowerPC CPU in 1994 (after prototypes in 1991 using the 88K), but to maintain compatibility, needed to emulate the 680x0. The initial emulator interpreted 68LC040 (without FPU) code, and a later version stored translated blocks of code, and ran faster than Apples previous high end Macintoshes. This impressed IBM engineers enough that a project was started to emulate the 80386+ architecture on a PowerPC (known as the PowerPC 615), but the project was cancelled (apparently after successful versions were completed - possibly because of performance, problems with efficiency using the PowerPC architecture (the 80x86 much more awkward and complicated than the 680x0), marketing decisions, or strategic/management decisions - I don't know, but the computer industry was very volatile at the time, and the path of the future was not at all clear). However development on the conncept continued with the DAISY project (Dynamically Architected Instruction Set from Yorktown), which translated to a hypothetical VLIW CPU instead of the PowerPC. Both the DAISY system, and a later project called Dynamo from Hewlett-Packard (which ran PA-RISC on PA-RISC), could optimise code as it ran (Dynamo could improve PA-RISC performance by up to 20% over non-emulated code).

也许680x0太慢?还有: Shortly after Intel's 8080, Motorola introduced the 6800. Some of the designers (notably Chuck Peddle) left to start MOS Technologies (later bought by Commodore), which introduced the 650x series which included the 6501 (pin compatible with the 6800, taken off the market almost immediately for legal reasons) and the 6502 (used in early Commodores, Apples and Ataris). Like the 6800 series, varients were produced which added features like I/O ports (6510 in the Commodore 64) or reduced costs with smaller address buses (6507 13-bit 8K address bus in the Atari 2600). The 650x was little endian (lower address byte could be added to an index register while higher byte was fetched) and had a completely different instruction set from the big endian 6800. Apple designer Steve Wozniak described it as the first chip you could get for less than a hundred dollars (actually a quarter of the 6800 price) - it became the CPU of choice for many early home computers (8 bit Commodore and Atari products). 苹果的套路可不是买最贵的散件+8%利润,而是买便宜的散件+培育粉丝。

How Intel Lost $10 Billion and the Mobile Market - ExtremeTech

The Decline and Rise of IBM (mit.edu)

六级/考研单词: synonym, rumor, persist, instruct, disappoint, march, despite, disable, implement, compute, integrity, manufacture, deploy, accord, vendor, cluster, million, orient, differ, transition, flaw, prohibit, intellect, controversy, merge, nasty, mar, swap, billion, nationwide, execute, integrate, audio, seldom, dual, float, data, parallel, dispatch, spectrum, confuse, hardware, modify, intermediate, appendix, necessity, aluminum, copper, boost, translate, indigenous, embed, prototype, compatible, emulate, interpret, complicate, volatile, dynamic, hypothesis, mobile

posted on 2022-03-08 23:00  华容道专家  阅读(41)  评论(0)    收藏  举报