摘要:
http://weaman.blog.hexun.com/8319817_d.html 行列式是解线性方程组的有力工具。但是,行列式的展开,对于二阶、三阶行列式来说还比较方便,而对于高于三阶行列式的展开,则没有一般规律可循。这时,把高阶行列式降阶,使它转化为较低阶的行列式,则是一条可行的道路。“余子式”和“代数余子式”就是适应这种需要而产生的。 把行列式中某一元素所在的行与列划去后,剩下的元素按行列顺序排列所组成的行列式,叫做原行列式中对应于这个元素的余子式。 设行列式中某一元素位于第i行第j列,把对应于这个元素的余子式乘上(-1)i+j后,所得到的式子叫做原行列式中对应于这个元... 阅读全文
posted @ 2012-02-21 09:13
陈峰
阅读(5198)
评论(0)
推荐(0)
浙公网安备 33010602011771号