NOIp 2018 前的数学板子总结

数论

Euclidean algorithm

用于求两个数的最大公因数, 也称辗转相除法。

证明:

\(z \mid x\), \(z \mid y\), 则\(z \mid (y - x)\)

\(z\)不是\(x\)的因子, 则\(z\)不是\(x\), \(y - x\)的公因子。

\(z \mid x\), \(z\)不是\(y\)的因子, 则\(z\)不是\(x\), \(y - x\)的公因子。

代码:

template<typename IntegerType> 
inline IntegerType Euclidean(const IntegerType &a, const IntegerType &b) {
  return b ? Euclidean(b, a % b) : a;
}

template<typename IntegerType>
inline IntegerType Euclidean(register IntegerType a, register IntegerType b) {
  if (b) while (b ^= a ^= b ^= a %= b) {}
  return a;
}

Extended Euclidean algorithm

用于求在已知\((a, b)\)时, 求解一组\((x, y)\), 使得\(ax+by=(a, b)\)

首先, 书上说根据数论中的相关定理, 解一定存在。

其次, 因为\((a, b) = (b, a \bmod b)\), 所以

\[\begin {aligned} ax + by &= (a, b) \\ &= (b, a \bmod b) \\ &= bx + (a \bmod b)y \\ &= bx + (a - \lfloor \frac{a}{b} \rfloor b)y \\ &= ay + (x - \lfloor \frac{a}{b} \rfloor y)b \end {aligned} \]

根据前面的结论: \(a\)\(b\)都在减小, 当\(b\)减小到\(0\)时, 就可以得出\(x = 1\), \(y = 0\)。然后递归回去就可以求出最终的\(x\)\(y\)了。

代码:

template<typename IntegerType>
inline void ExtendedEuclidean(const IntegerType &a, const IntegerType &b, register IntegerType &gcd, register IntegerType &x, register IntegerType &y) {
  if (!b) {
    x = 1, y = 0, gcd = a;
  } else {
    ExtendedEuclidean(b, a % b, gcd, y, x), 
    y -= a / b * x;
  }
}

Modular multiplicative inverse

若有\(ax \equiv 1 \pmod b\)(其中\(a\), \(b\)互素), 则称\(x\)\(a\)的逆元, 记为\(a^{-1}\)

因此逆元有如下性质:

\[a \cdot a^{-1} \equiv 1 \pmod b \]

逆元的一大应用是模意义下的除法, 除法在模意义下并不是封闭的,但我们可以根据上述公式,将其转化为乘法。

\[\frac{x}{a} = x \cdot a^{-1} \pmod b \]

Quick Power

根据Fermat's little theorem(即\(a^p \equiv a \pmod p\), 其中\(p\)为素数且\(a\)\(p\)的倍数。若\(a\), \(p\)互素, 则有\(a^{p - 1} \equiv 1 \pmod p\))的公式, 变形可以得到

\[a \cdot a^{p - 2} \equiv 1 \pmod p \]

根据乘法逆元的定义, \(a^{p - 2}\)即为\(a\)的乘法逆元。

使用快速幂计算, 时间复杂度为\(\Theta(\lg p)\)

代码:

template<typename IntegerType>
inline IntegerType QuickPower(register IntegerType base, register IntegerType times, const IntegerType &kMod) {
  register IntegerType ret(1);
  while (times) {
    if (times & 1) ret = ret * base % kMod;
    base = base * base % kMod,
    times >>= 1;
  }
  return ret % kMod;
}
template<typename IntegerType>
inline IntegerType ModularMultiplicativeInverse(const IntegerType a, const IntegerType &p) {
  return QuickPower(a, p - 2, p);
}
Extended Euclidean algorithm

Extended Euclidean algorithm用来求解方程\(ax + by = (a, b)\)的一组解, 其中, 当\(b\)为素数时, 有\((a, b) = 1\), 则有

\[ax \equiv 1 \pmod b \]

时间复杂度: \(\Theta(\lg a)\)

template<typename IntegerType>
inline void ExtendedEuclidean(const IntegerType &a, const IntegerType &b, register IntegerType &x, register IntegerType &y) {
  if (!b) {
    x = 1, y = 0;
  } else {
    ExtendedEuclidean(b, a % b, y, x), 
    y -= a / b * x;
  }
}
template<typename IntegerType>
inline IntegerType ModularMultiplicativeInverse(const IntegerType a, const IntegerType &p) {
  register IntegerType x, y;
  ExtendedEuclidean(a, p, x, y);
  return (x % p + p) % p;
}
Recurse

\(t = \lfloor \frac{p}{i} \rfloor\), \(k = p \bmod i\), 那么

\[ti + k \equiv 0 \pmod p \Rightarrow -ti \equiv k \pmod p \]

两边同时除以\(ki\), 得到

\[-tk^{-1} \equiv i^{-1} \pmod p \]

\(t\)\(k\)替换回来, 得到递推式

\[i^{-1} = (p - \lfloor \frac{p}{i} \rfloor)(p \bmod i)^{-1} \bmod p \]

其中\(i \leq p\)

时间复杂度: \(\Theta(a)\)

代码:

template<typename IntegerType>
inline IntegerType ModularMultiplicativeInverse(const IntegerType a, const IntegerType &p) {
  register IntegerType inverse[100000] = {0, 1};
  for (register IntegerType i(2); i <= a; ++i) {
    inverse[i] = ((-p / i * inverse[p % i]) % p + p) % p;
  }
  return inverse[a];
}

Chinese remainder theorem

设自然数\(m_1, m_2, \cdots , m_r\)两两互素, 并记\(N = m_1m_2\cdots m_r\), 则同余方程组:

\[\begin{cases} x \equiv a_1 \pmod {m_1} \\ x \equiv a_2 \pmod {m_2} \\ \cdots \\ x \equiv a_r \pmod {m_r} \end{cases} \]

在模\(N\)同余的意义下有唯一解。

解法:

考虑方程组\((1 \leq i \leq r)\):

\[\begin{cases} x \equiv 0 \pmod {m_1} \\ \cdots \\ x \equiv 0 \pmod {m_{i - 1}} \\ x \equiv 1 \pmod {m_i} \\ x \equiv 0 \pmod {m_{i + 1}} \\ \cdots \\ x \equiv 0 \pmod {m_r} \end{cases} \]

由于各\(m_i\)(\(1 \leq i \leq r\))两两互素, 这个方程组作变量替换, 令\(x = \lfloor \frac{N}{m_i} \rfloor y\), 方程组等价于解同余方程: \(\lfloor \frac{N}{m_i} \rfloor y \equiv 1 \pmod {m_i}\), 若要得到特解\(y_i\), 只要令:\(x_i = \lfloor \frac{N}{m_i} \rfloor y_i\), 则方程组的解为:\(x_0 = a_1x_1 + a_2x_2 + \cdots + a_rx_r \pmod N\), 在模\(N\)的意义下唯一。

时间复杂度: \(\Theta(n \lg a)\)

template<typename IntegerType>
inline void ExtendedEuclidean(const IntegerType &a, const IntegerType &b, register IntegerType &x, register IntegerType &y) {
  if (!b) {
    x = 1, y = 0;
  } else {
    ExtendedEuclidean(b, a % b, y, x), 
    y -= a / b * x;
  }
}
template<typename IntegerType>
inline IntegerType ChineseRemainderTheorem(const std::vector<IntegerType> &a, const std::vector<IntegerType> &m) {
  register IntegerType N(1), x, y, ret(0);
  for (auto i : m) {
    N *= i;
  }
  for (register int i(0), maximum(a.size()); i < maximum; ++i) {
    register IntegerType b(N / m[i]);
    ExtendedEuclidean(b, m[i], x, y),
    ret = (ret + b * x * a[i]) % N;
  }
  return (ret % N + N) % N;
}

Extended Chinese remainder theorem

并不是所有的同余方程组的\(m_i\)(\(1 \leq i \leq r\))都互素, 这时候就需要用到扩展中国剩余定理。

对于同余方程组:

\[\begin{cases} x \equiv a_1 \pmod {m_1} \\ x \equiv a_2 \pmod {m_2} \\ \cdots \\ x \equiv a_r \pmod {m_r} \end{cases} \]

我们首先只考虑其中的两个方程, 可以得到

\[\begin {cases} x = a_1 + k_1m_1 \\ x = a_2 + k_2m_2 \end {cases} \Rightarrow a_1 + k_1m_1 = a_2 + k_2m_2 \\ \Rightarrow k_2m_2 - k_1m_1 = a_1 - a_2 \]

其形式类似于\(ax + by = c\)

则当\((m_1, m_2) \nmid (a_1 - a_2)\)时, 方程无解。

\((m_1, m_2) \mid (a_1 - a_2)\), 就用Extended Euclidean algorithm求出\(m_1x + m_2y = (m_1, m_2)\)\(y\), 两边同时乘上\(\frac{a_1 - a_2}{(m_1, m_2)}\), 就得到了\(k_1\)

然后反推\(x\), 得到\(x = a_1 - k_1m_1\)

这个\(x\)适用于这两个方程, 设它为\(x_0\), 就得到了通解: \(x = x_0 + k[m_1, m_2]\), 且原两个方程与该方程是等价的。

我们把这个方程稍微转化一下, 就得到了新的同余方程: \(x \equiv x_0 \pmod {[m_1, m_2]}\), 以此类推, 得到的最后的方程的最小非负数解就是我们要找的答案。

时间复杂度: \(\Theta(n \lg b)\)

题目链接: POJ 2891 Strange Way to Express Integers

#include <cstdio>
#include <vector>
int n;
template<typename IntegerType>
inline void ExtendedEuclidean(const IntegerType &a, const IntegerType &b, register IntegerType &gcd, register IntegerType &x, register IntegerType &y) {
  if (!b) {
    x = 1, y = 0, gcd = a;
  } else {
    ExtendedEuclidean(b, a % b, gcd, y, x), 
    y -= a / b * x;
  }
}
template<typename IntegerType>
inline IntegerType ExtendedChineseRemainderTheorem(const std::vector<IntegerType> &a, const std::vector<IntegerType> &m) {
  register IntegerType N(m[1]), ret(a[1]), x, y, gcd;
  for (register int i(0), maximum(a.size()); i < maximum; ++i) {
    ExtendedEuclidean(N, m[i], gcd, x, y);
    if ((ret - a[i]) % gcd) return -1;
    x = (ret - a[i]) / gcd * x % m[i],
    ret -= N * x;
    N = N / gcd * m[i];
    ret %= N;
  }
  return (ret % N + N) % N;
}
std::vector<long long> a, r;
int main(int argc, char const *argv[]) {
  while (~scanf("%d", &n)) {
    a.clear(), r.clear();
    for (register long long i(1), _a, _r; i <= n; ++i) {
      scanf("%lld %lld", &_a, &_r);
      a.push_back(_a), r.push_back(_r);
    }
    printf("%lld\n", ExtendedChineseRemainderTheorem(r, a));
  }
  return 0;
}

素数判定

素数判定的暴力方法

时间复杂度: \(\Theta(\sqrt{n})\)

template<typename IntegerType>
inline bool IsPrime(const IntegerType &n) {
  for (register int i(2); i * i <= n; ++i) {
    if (!(n % i)) return false;
  }
  return true;
}

Sieve of Eratosthenes

又称素数的线性筛法。

方法如下:

  1. 使\(p\)等于\(2\), 即最小的素数
  2. 将表中所有\(p\)的倍数标记为合数
  3. 使\(p\)等于表中大于\(p\)的最小素数, 若没有则结束
  4. 重复第\(2\)

时间复杂度: \(\Theta(n \lg \lg n)\)

题目链接: Luogu P3383 【模板】线性筛素数

#include <cstdio>
#include <vector>
int n, m;
bool isnt_prime[10000010] = {1, 1};
std::vector<int> prime;
inline void SieveOfEratosthenes() {
  for (register int i(2); i <= n; ++i) {
    if (!isnt_prime[i]) {
      prime.push_back(i);
    }
    for (auto j : prime) {
      if (i * j > n) break;
      isnt_prime[i * j] = 1;
      if (!(i % j)) break;
    }
  }
}
int main(int argc, char const *argv[]) {
  scanf("%d %d", &n, &m);
  SieveOfEratosthenes();
  for (register int i(0), x; i < m; ++i) {
    scanf("%d", &x),
    puts(isnt_prime[x] ? "No" : "Yes");
  }
  return 0;
}

Miller-Rabin primality test

这是一种随机性素性测试算法, 结果可能出错, 但可能性极小。

费马小定理:

\(p\)为素数, \(a\)为正整数, 且\((a, p) \ne 1\), 则\(a^p \equiv a \pmod p\)

若有\((a, p) = 1\), 则\(a^{p - 1} \equiv 1 \pmod p\)

但对于一些数\(p\), 它们满足\(a^p \equiv a \pmod p\), 但却是合数, 我们将它们定义为伪素数(Pseudoprime)。

费马小定理的逆定理并不成立, 但很多时候是可行的。

Miller-Rabin正是基于费马小定理:

取多个底\(a\)使得\((a, n) = 1\), 测试是否有\(a^{p - 1} \equiv 1 \pmod p\), 若成立, 则可以近似地将\(n\)看作素数。

还有一类被称为Carmichael数的数, 它们满足\(a^{p - 1} \equiv 1 \pmod p\), 但是是合数。

为了减少Carmichael数对素性测试的影响, 我们引进一个引理:

\(1\)\(-1\)的平方模\(p\)总得到\(1\), 称它们为\(1\)的平凡平方根; 同样地, 有\(1\)的非平凡平方根。使得\(x\)为一个与\(1\)关于模\(p\)同余的数的平方根, 那么:

\[x^{2}\equiv 1{\pmod {p}} \\ (x-1)(x+1)\equiv 0{\pmod {p}} \]

换句话说, \(p \mid (x - 1)(x + 1)\)。根据Euclid's lemma, \(p \mid (x - 1)\)\(p \mid (x + 1)\), 也就是\(x \equiv 1 \pmod p\)\(x \equiv -1 \pmod p\)

由此推出, 若\(p\)为素数, 那么\(x^2 \equiv 1 \pmod p\)(\(0 < x < p\))的解为\(\begin{cases}x_1 = 1 \\ x_2 = p - 1\end{cases}\)

时间复杂度: \(\Theta(s \log_3n)\)(\(s\)为测试次数)

题目链接: hihoCoder #1287 : 数论一·Miller-Rabin质数测试

#include <ctime>
#include <cstdio>
#include <cstdlib>
template<typename IntegerType>
inline IntegerType QuickMultiplication(register IntegerType base, register IntegerType times, const IntegerType &kMod) {
	register IntegerType ret(0);
	base %= kMod;
	while (times) {
		if (times & 1) ret = (ret + base) % kMod;
		base = (base << 1) % kMod,
		times >>= 1;
	}
	return ret % kMod;
}
template<typename IntegerType>
inline IntegerType QuickPower(register IntegerType base, register IntegerType times, const IntegerType &kMod) {
  register IntegerType ret(1);
	base %= kMod;
	while (times) {
		if (times & 1) ret = QuickMultiplication(ret, base, kMod);
		base = QuickMultiplication(base, base, kMod),
		times >>= 1;
	}
	return ret % kMod;
}
template<typename IntegerType>
inline bool MillerRabin(const IntegerType &n) {
	if (n <= 2) return n == 2;
	if (!(n & 1)) return false;
	register int times(0);
	register IntegerType a, x, y, u(n - 1);
	while (!(u & 1)) ++times, u >>= 1;
	for (register int i(0); i < 10; ++i) {
		a = rand() % (n - 1) + 1,
		x = QuickPower(a, u, n);
		for (register int j(0); j < times; ++j) {
			y = QuickMultiplication(x, x, n);
			if (y == 1 && x != 1 && x != n - 1) return false;
			x = y;
		}
		if (x != 1) return false;
	}
	return true;
}
int T;
long long num;
int main(int argc, char const *argv[]) {
	srand(time(nullptr));
	scanf("%d", &T);
	while (T--) {
		scanf("%lld", &num);
		puts(MillerRabin(num) ? "Yes" : "No");
	}
	return 0;
}

Euler's totient function的线性筛选法

下面几个性质我就不证了知道有用就行

  1. \(\phi(p) = p - 1\)
  2. 如果\(i \bmod p = 0\), 那么\(\phi(ip) = p\phi(i)\)
  3. \(i \bmod p \ne 0\), 那么\(\phi(ip) = (p - 1)\phi(i)\)

时间复杂度: 趋近于\(\Theta(n)\)

template<typename IntegerType>
inline void SieveOfPhi() {
  phi[1] = 1;
  for (register IntegerType i(2); i <= n; ++i) {
    if (!iscomposite[i]) {
      prime.push_back(i), 
      phi[i] = i - 1;
    }
    for (auto j : prime) {
      if (i * j > n) break;
      iscomposite[i * j] = true;
      if (!(i % j)) {
        phi[i * j] = phi[i] * j;
        break;
      } else {
        phi[i * j] = phi[i] * (j - 1);
      }
    }
  }
}

求一个数的\(\phi\)函数值

减去与它不互素的就行。

时间复杂度: \(\Theta(\sqrt n)\)

template<typename IntegerType>
inline IntegerType Phi(register IntegerType n) {
  register IntegerType ret(n);
  for (register IntegerType i(2); i * i <= n; ++i) {
    if (!(n % i)) {
      ret -= ret / i;
      while (!(n % i)) n /= i;
    }
  }
  return n > 1 ? ret - ret / i : ret;
}

组合数学

Lucas's theorem

Lucas's theorem是用来求\({n \choose m} \bmod p\)的值。其中: \(n\)\(m\)时非负整数, \(p\)是素数。

Lucas's theorem的结论:

  1. \(Lucas(n, m, p) = cm(n \bmod p, m \bmod p) \cdot Lucas(\lfloor \frac{n}{p} \rfloor, \lfloor \frac{m}{p} \rfloor, p)\);

    \(Lucas(x, 0, p) = 1\);

    其中, \(cm(a, b) = a!(b!(a - b)!)^{p - 2} \bmod p = \frac{a!(b!)^{p - 2}}{(a - b)!}\)

  2. 对于非负整数\(m\)\(n\)以及素数\(p\), 将\(n\)\(m\)\(p\)进制方式表达, 即

    \[m=m_{k}p^{k}+m_{k-1}p^{k-1}+\cdots +m_{1}p+m_{0} \]

    \[n=n_{k}p^{k}+n_{k-1}p^{k-1}+\cdots +n_{1}p+n_{0} \]

    以下同余关系成立:

    \[{\binom {m}{n}}\equiv \prod _{i=0}^{k}{\binom {m_{i}}{n_{i}}}{\pmod {p}} \]

时间复杂度: \(\Theta(\log_pn)\)

题目链接: Luogu P3807 【模板】卢卡斯定理

#include<cstdio>
long long a[100010];
template<typename IntegerType>
inline IntegerType pow(register IntegerType base, register IntegerType times, const IntegerType &kMod) {
	register IntegerType ans(1);
	base %= kMod;
	while (times) {
		if (times & 1) ans = ans * base % kMod;
		base = base * base % kMod,
		times >>= 1;
	}
	return ans;
}
template<typename IntegerType>
inline IntegerType C(const IntegerType &n, const IntegerType &m, const IntegerType &kMod) {
    return m > n ? 0 : a[n] * pow(a[m], kMod - 2, kMod) % kMod * pow(a[n - m], kMod - 2, kMod) % kMod;
}
template<typename IntegerType>
inline IntegerType Lucas(const IntegerType &n, const IntegerType &m, const IntegerType &kMod) {
    return m ? C(n % kMod, m % kMod, kMod) * Lucas(n / kMod, m / kMod, kMod) % kMod : 1;
}
int T;
long long n, m, p;
int main(int argc, char const *argv[]) {
    scanf("%d", &T);
    while (T--) {
			register long long n, m;
			scanf("%lld %lld %lld", &n, &m, &p);
        a[0] = 1;
        for (register long long i(1); i <= p; ++i) {
					a[i] = a[i - 1] * i % p;
				}
				printf("%lld\n", Lucas(n + m, n, p));
    }
}

矩阵

#include <cmath>
#include <vector>
#include <algorithm>
#include <iostream>
#include <cassert>
#define EPS 1e-8
class matrix {
 private:
  std::vector<std::vector<double> > mat;
  unsigned long swap_times;
 public:
  matrix();//初始化为空的构造函数
  matrix(const matrix&);//初始化为另一个矩阵的构造函数
  matrix(const unsigned long&, const unsigned long&);//同初始化的构造函数
  std::vector<double>& operator [](const unsigned long &lines) {//下标运算符
    return mat[lines];
  }
  void assign(const unsigned long&, const unsigned long&);//初始化
  friend std::ostream& operator <<(std::ostream&, const matrix&);//输出流
  matrix operator +(const matrix &another) const {//加法
    assert(this->mat.size() == another.mat.size() && this->mat.size() ? this->mat[0].size() == another.mat[0].size() : true);
    if (!this->mat.size() || !this->mat[0].size()) return matrix();
    matrix ret(this->mat.size() - 1, this->mat[0].size() - 1);
    for (unsigned long i(1), row(this->mat.size()); i < row; ++i) {
      for (unsigned long j(1), column(this->mat[0].size()); j < column; ++j) {
        ret[i][j] = this->mat[i][j] + another.mat[i][j];
      }
    }
    return ret;
  }
  matrix& operator +=(const matrix &another) {
    *this = *this + another;
    return *this;
  }
  matrix operator -(const matrix &another) const {//减法
    assert(this->mat.size() == another.mat.size() && this->mat.size() ? this->mat[0].size() == another.mat[0].size() : true);
    if (!this->mat.size() || !this->mat[0].size()) return matrix();
    matrix ret(this->mat.size() - 1, this->mat[0].size() - 1);
    for (unsigned long i(1), row(this->mat.size()); i < row; ++i) {
      for (unsigned long j(1), column(this->mat[0].size()); j < column; ++j) {
        ret[i][j] = this->mat[i][j] - another.mat[i][j];
      }
    }
    return ret;
  }
  matrix& operator -=(const matrix &another) {
    *this = *this - another;
    return *this;
  }
  matrix operator *(const double &number) const {//数乘
    if (!this->mat.size() || !this->mat[0].size()) return matrix();
    matrix ret(this->mat.size() - 1, this->mat[0].size() - 1);
    for (unsigned long i(1), row(this->mat.size()); i < row; ++i) {
      for (unsigned long j(1), column(this->mat[0].size()); j < column; ++j) {
        ret[i][j] = this->mat[i][j] * number;
      }
    }
    return ret;
  }
  friend matrix operator *(const double&, const matrix&);//数乘
  matrix& operator *=(const double &number) {
    *this = *this * number;
    return *this;
  }
  matrix operator ~() const {//转置
    if (!this->mat.size() || !this->mat[0].size()) return matrix();
    matrix ret(this->mat[0].size() - 1, this->mat.size() - 1);
    for (unsigned long i(1), row(this->mat.size()); i < row; ++i) {
      for (unsigned long j(1), column(this->mat[0].size()); j < column; ++j) {
        ret[j][i] = this->mat[i][j];
      }
    }
    return ret;
  }
  matrix operator *(const matrix &another) const {//矩阵乘法
    if (!this->mat.size() || !this->mat[0].size() || !another.mat.size() || !another.mat[0].size()) return matrix();
    assert(this->mat[0].size() == another.mat.size());
    matrix ret(this->mat.size() - 1, another.mat[0].size() - 1);
    for (unsigned long i(1), row(this->mat.size()); i < row; ++i) {
      for (unsigned long j(1), column(another.mat[0].size()); j < column; ++j) {
        ret.mat[i][j] = 0.00000000;
        for (unsigned long k(1), tmp(this->mat.size()); k < tmp; ++k) {
          ret.mat[i][j] += this->mat[i][k] * another.mat[k][j];
        }
      } 
    }
    return ret;
  }
  matrix operator *=(const matrix &another) {
    *this = *this * another;
    return *this;
  }
  matrix operator ^(unsigned long times) const {//矩阵快速幂
    if (!this->mat.size() || !this->mat[0].size()) return matrix();
    assert(this->mat[0].size() == this->mat.size());
    matrix ret(this->mat.size() - 1, this->mat.size() - 1), base(*this);
    while (times) {
      if (times & 1) ret = ret * base;
      base  = base * base,
      times >>= 1;
    }
    return ret;
  }
  matrix swap_row(const unsigned long&, const unsigned long&);//交换两行
  matrix swap_column(const unsigned long&, const unsigned long&);//交换两列
  matrix eliminate();//高斯消元
  double det();//行列式
  matrix cofactor(const unsigned long&, const unsigned long&);//余子式
  matrix algebraic_cofactor(const unsigned long&, const unsigned long&);//代数余子式
  matrix principal_minor(const unsigned long&);//主子式
};
matrix::matrix() {
  mat = std::vector<std::vector<double> >();
}
matrix::matrix(const matrix &mat) {
  *this = mat;
}
matrix::matrix(const unsigned long &row, const unsigned long &column) {
  mat.clear(), mat.assign(row + 1, std::vector<double>(column + 1, 0.000000));
  for (unsigned long i(0), maximum(std::min(row, column)); i <= maximum; mat[i][i] = 1.000000, ++i);
}
void matrix::assign(const unsigned long &row, const unsigned long &column) {
  mat.clear(), mat.assign(row + 1, std::vector<double>(column + 1, 0.000000));
  for (unsigned long i(0), maximum(std::min(row, column)); i <= maximum; mat[i][i] = 1.000000, ++i);
}
std::ostream& operator <<(std::ostream &os, const matrix &mat) {
  for (unsigned long i(1), row(mat.mat.size()); i < row; ++i) {
    for (unsigned long j(1), column(mat.mat[0].size()); j < column; ++j) {
      os << mat.mat[i][j] << (j == column - 1 ? '\n' : ' ');
    }
  }
  return os;
}
matrix operator *(const double &number, const matrix &mat) {
  if (!mat.mat.size() || !mat.mat[0].size()) return matrix();
  matrix ret(mat.mat.size() - 1, mat.mat[0].size() - 1);
  for (unsigned long i(1), row(mat.mat.size()); i < row; ++i) {
    for (unsigned long j(1), column(mat.mat[0].size()); j < column; ++j) {
      ret[i][j] = mat.mat[i][j] * number;
    }
  }
  return ret;
}
matrix matrix::swap_row(const unsigned long &index1, const unsigned long &index2) {
  assert(index1 > 0 && index1 < this->mat.size()),
  assert(index2 > 0 && index2 < this->mat.size());
  matrix ret(*this);
  if (index1 == index2) return ret;
  std::swap(ret[index1], ret[index2]);
  return ret;
}
matrix matrix::swap_column(const unsigned long &index1, const unsigned long &index2) {
  matrix ret(*this);
  return ~((~ret).swap_row(index1, index2));
}
matrix matrix::eliminate() {
  swap_times = 0;
  matrix ret(*this);
  unsigned long h(1), k(1), m(ret.mat.size() - 1), n(ret.mat[0].size() - 1), i_max;
  double f;
  while (h < m && k <= n) {
    i_max = h;
    for (unsigned long i(h + 1); i <= m; ++i) {
      i_max = fabs(ret[i_max][k]) > fabs(ret[i][k]) ? i_max : i;
    }
    if (fabs(ret[i_max][k]) < EPS) ++k;
    else {
      ret.swap_row(h, i_max), swap_times += h != i_max;
      for (unsigned long i(h + 1); i <= m; ++i) {
        f = ret[i][k] / ret[h][k];
        ret[i][k] = 0.00000000;
        for (unsigned long j(k + 1); j <= n; ++j) {
          ret[i][j] -= ret[h][j] * f;
        }
      }
      ++h, ++k;
    }
  }
  return ret;
}
double matrix::det() {
  matrix tmp(this->eliminate());
  double ret(1.00000000);
  if (!tmp.mat.size()) return ret;
  assert(tmp.mat.size() == tmp.mat[0].size());
  for (int i(1), lines(tmp.mat.size()); i < lines; ++i) {
    ret *= tmp[i][i];
  }
  return ret * (swap_times & 1 ? -1.00000000 : 1.00000000);
}
matrix matrix::cofactor(const unsigned long &row, const unsigned long &column) {
  matrix ret;
  if (!this->mat.size() || !this->mat[0].size()) return ret;
  ret.mat.assign(this->mat.size() - 1, std::vector<double>(1, 0.00000000));
  unsigned long h(1), m(this->mat.size()), n(this->mat[0].size() - 1);
  for (unsigned long i(1); i < m; ++i) {
    if (i == row) continue;
    if (column == 1) {
      ret.mat[h].insert(ret.mat[h].end(), this->mat[i].begin() + 2, this->mat[i].end());
    } else if (column == n) {
      ret.mat[h].insert(ret.mat[h].end(), this->mat[i].begin() + 1, this->mat[i].end() - 1);
    } else {
      ret.mat[h].insert(ret.mat[h].end(), this->mat[i].begin() + 1, this->mat[i].begin() + column);
      ret.mat[h].insert(ret.mat[h].end(), this->mat[i].begin() + column + 1, this->mat[i].end());
    }
    ++h;
  }
  matrix true_ret(this->mat.size() - 2, this->mat[0].size() - 2);
  for (unsigned long i(1); i < m - 1; ++i) {
    for (unsigned long j(1); j < n; ++j) {
      true_ret[i][j] = ret[i][j];
    }
  }
  return true_ret;
}
matrix matrix::algebraic_cofactor(const unsigned long &row, const unsigned long &column) {
  return this->cofactor(row, column) * ((row + column) & 1 ? -1.00000000 : 1.00000000);
}
matrix matrix::principal_minor(const unsigned long &lines) {
  return this->cofactor(lines, lines);
}
#undef EPS
int main(int argc, char const *argv[]) {
  return 0;
}

Kirchhoff's theorem

这个定理可以用来求一个无向图\(G\)的生成树个数。首先明确几个概念:

  1. \(G\)的度数矩阵\(D_G\)是一个\(n×n\)的矩阵, 并且满足: 当\(i\ne j\)时, \(d_{ij} = 0\); 当\(i = j\)时, \(d_{ij}\)等于\(v_i\)的度数。
  2. \(G\)的邻接矩阵\(A_G\)也是一个\(n×n\)的矩阵, 并且满足: 如果\(v_i\)\(v_j\)之间有边直接相连, 则\(a_{ij} = 1\), 否则为\(0\)
    定义\(G\)的Laplacian matrix\(C_G\)\(C_G = D_G - A_G\), 则Kirchhoff's theorem可以描述为:

\(G\)的所有不同的生成树的个数等于其Laplacian matrix任何一个\(n - 1\)阶主子式的行列式的绝对值。

时间复杂度: \(\Theta(n^3)\)

题目链接: SPOJ 104 HIGH - Highways

这里只给主函数代码, 其余部分在上面的矩阵类里。

matrix graph;
int T, n, m, u, v;
int main(int argc, char const *argv[]) {
  scanf("%d", &T);
  while (T--) {
    scanf("%d %d", &n, &m);
    graph.assign(n, n);
    for (unsigned long i(1); i <= n; ++i) graph[i][i] = 0;
    while (m--) {
      scanf("%d %d", &u, &v);
      ++graph[u][u], ++graph[v][v];
      graph[u][v] = graph[v][u] = -1.00000000;
    }
    printf("%.0lf\n", n == 1 ? 1.00000000 : fabs(graph.principal_minor(1).det()));
  }
  return 0;
}
posted @ 2018-10-09 20:08  Acenaphthene  阅读(593)  评论(0编辑  收藏  举报