fft相关的复习

任意长度卷积 CZT

就是一波推导

\[\begin{aligned} b_i &= \sum_{j=0}^{n-1} \omega^{ij}a_j \\ &= \sum_{j=0}^{n-1} \omega^{\frac{i^2+j^2-(i-j)^2}{2}}a_j \\ &= \omega^{\frac{i^2}{2}} \sum_{j=0}^{n-1}\omega^{\frac{-(i-j)^2}{2}} a_j \omega^{j^2} \end {aligned} \]

后面是一个减法卷积,就可以扩展到2的幂次直接fft就好了。

2次dft计算卷积

考虑有两个长度为\(n = 2^k\)的序列\(a(x), b(x)\),我们要计算他们的dft。

构造序列\(p_k = a_k + ib_k, \; q_k = a_k - ib_k\)

有结论\(dft_q(k) = conj(dft_p((n - k) \mod n))\)。展开,考虑几何意义???

我们可以解出\(dft_a, dft_b​\)

再做一遍idft就可以了

拆系数fft

\(M = \sqrt {mod}​\),把\(x​\)表示成\(x = a \times M + b, b < M​\)

\((a \times M + b)(c \times M + d) = ac \times M^2 + (ad + bc) \times M + bd\)

对每一项分开算,做7次dft就可以了。

套用上述介绍做法4次dft就够了。

实现上注意在idft的时候,直接把一个序列放在real,另一个放在imag,idft回来直接/N后计算贡献就好了。

以及我们可以直接在一个for里面做解出AB,reverse序列的事情。

下面是关键部分的代码。

poly realmain(poly a, poly b) {
    int n = a.size(), m = b.size();
    prepare(n + m - 1);
    for (int i = 0; i < n; i++) A[i] = cpx(a[i] & 32767, a[i] >> 15);
    for (int i = 0; i < m; i++) B[i] = cpx(b[i] & 32767, b[i] >> 15);
    dft(A, fft_n); dft(B, fft_n);
    for (int i = 0; i < fft_n; i++) {
        int j = (fft_n - i) % fft_n;
        cpx ax, ay, bx, by;
        ax = (A[i] + A[j].conj()) * cpx(0.5, 0);
        ay = (A[i] - A[j].conj()) * cpx(0, -0.5);
        bx = (B[i] + B[j].conj()) * cpx(0.5, 0);
        by = (B[i] - B[j].conj()) * cpx(0, -0.5);
        C[j] = ax * bx + ay * by * cpx(0, 1.0);
        D[j] = ay * bx + ax * by * cpx(0, 1.0);
    }
    dft(C, fft_n); dft(D, fft_n);
    poly ans(n + m - 1, 0);
    for (int i = 0; i < ans.size(); i++) {
        lo ax = lo(C[i].x / fft_n + 0.5) % mod;
        lo ay = lo(C[i].y / fft_n + 0.5) % mod;
        lo bx = lo(D[i].x / fft_n + 0.5) % mod;
        lo by = lo(D[i].y / fft_n + 0.5) % mod;
        ans[i] = ax + ((by + bx) << 15) + (ay << 30);
        ans[i] = (ans[i] % mod + mod) % mod;
    }
    return ans;
}
posted @ 2019-03-09 19:53  foreverpiano  阅读(303)  评论(0编辑  收藏  举报