摘要:
优点Naive Bayes classifiers tend to perform especially well in one of the following situations: When the naive assumptions actually match the data (very 阅读全文
摘要:
因为每一条数据都服从IID原则: 根据中心极限定理,当数据增加的时候,样本均值的分布慢慢变成正态分布 不管分布式什么分布,累加起来都是高斯分布 As sum increases, sum of non-Gaussian, finite variance variables is also Gauss 阅读全文
摘要:
training set: 用来训练模型 validation set : 用来做model selection test set : 用来评估所选出来的model的实际性能 我们知道,在做模型训练之前,我们必须选择所训练的模型的形式:线性模型(y = wx+b)或者非线性模型(SVM,decisi 阅读全文