数理方程:Fourier级数

更新:25 MAR 2016

对于周期函数(周期为\(2\pi\))或定义在\([-\pi,\pi]\)上的函数\(f(x)\),可以展开为*

\(\large f(x)=\dfrac{a_0}{2}+\sum\limits_{n=1}^{\infty}(a_n\cos nx+b_n\sin nx)\quad n=0,1,2,…\)

则系数为

\(\large a_n=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\cdot\cos nx dx\)

\(\large b_n=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\cdot\sin nx dx\)

 

对于周期函数(周期为\(2l\))或定义在\([-l,l]\)上的函数\(f(x)\),

\(\large f(x)=\dfrac{a_0}{2}+\sum\limits_{n=1}^{\infty}\left(a_n\cos\frac{n\pi}{l}x+b_n\sin\frac{n\pi}{l}x\right)\)

则系数为

\(\large a_n=\frac{1}{l}\int_{-l}^{l}f(x)\cdot\cos\frac{n\pi}{l}xdx\)

\(\large b_n=\frac{1}{l}\int_{-l}^{l}f(x)\cdot\sin\frac{n\pi}{l}xdx\)

 

对于定义在\([0,l]\)上的函数\(f(x)\),展成Fourier级数,需要用到延拓的概念,此时可以选择奇延拓(展成正弦函数)或偶延拓(展成余弦函数)

奇延拓(展成正弦函数)

\(\large f(x)=\sum\limits_{n=1}^{\infty}b_n\sin\frac{n\pi}{l}x\)

\(\large b_n=\frac{2}{l}\int_{0}^{l}f(x)\cdot\sin\frac{n\pi}{l}xdx\)

偶延拓(展成余弦函数)

\(\large f(x)=\dfrac{a_0}{2}+\sum\limits_{n=1}^{\infty}a_n\cos\frac{n\pi}{l}x\)

\(\large a_n=\frac{2}{l}\int_{0}^{l}f(x)\cdot\cos\frac{n\pi}{l}xdx\)

 

* 展开有条件(Dirichlet条件),此处不详细说明。对于一般数学物理方程基本适用。

posted @ 2016-03-25 21:50  羽夜  阅读(909)  评论(0编辑  收藏  举报