md中使用LatTex公式

LaTex公式

$$J_\alpha(x)=\sum_{m=0}^\infty\frac{(-1)^m}{m!\Gamma(m+\alpha+1)}{\left({\frac{x}{2}}\right)}^{2m+\alpha}$$

\[ J_\alpha(x)=\sum_{m=0}^\infty\frac{(-1)^m}{m!\Gamma(m+\alpha+1)}{\left({\frac{x}{2}}\right)}^{2m+\alpha} \]

$$\frac{a-1}{b-1} \quad and \quad {a+1\over b+1}$$

\[\frac{a-1}{b-1} \quad and \quad {a+1\over b+1} \]

$$\sqrt{2} \quad and \quad \sqrt[n]{3}$$

\[\sqrt{2} \quad and \quad \sqrt[n]{3} \]

$$f(x)=\sum_{k=0}^{n}\frac{f^{(k)}{x_0}}{k!}{(x-x_0)^k}+{\frac{f^{(n+1)}(\xi)}{(n+1)!}}{(x-x_0)^{n+1}} \text{,Maclaurin公式}$$

\[f(x)=\sum_{k=0}^{n}\frac{f^{(k)}{x_0}}{k!}{(x-x_0)^k}+{\frac{f^{(n+1)}(\xi)}{(n+1)!}}{(x-x_0)^{n+1}} \text{,Maclaurin公式} \]

$$f(x) = {{{a_0}} \over 2} + \sum\limits_{n = 1}^\infty  {({a_n}\cos {nx} + {b_n}\sin {nx})} s  \text{, 傅里叶级数}$$

\[f(x) = {{{a_0}} \over 2} + \sum\limits_{n = 1}^\infty {({a_n}\cos {nx} + {b_n}\sin {nx})} s \text{, 傅里叶级数} \]

$$  e ^ { x } = 1 + \frac { x } { 1 ! } + \frac { x ^ { 2 } } { 2 ! } + \frac { x ^ { 3 } } { 3 ! } + \cdots , \quad - \infty < x < \infty  \text {,泰勒公式}  $$

\[e ^ { x } = 1 + \frac { x } { 1 ! } + \frac { x ^ { 2 } } { 2 ! } + \frac { x ^ { 3 } } { 3 ! } + \cdots , \quad - \infty < x < \infty \text {,泰勒公式} \]

$$  \iiint _ { \Omega } \left( \frac { \partial {P} } { \partial {x} } + \frac { \partial {Q} } { \partial {y} } + \frac { \partial {R} }{ \partial {z} } \right) \mathrm { d } V = \oint _ { \partial \Omega } ( P \cos \alpha + Q \cos \beta + R \cos \gamma ) \mathrm{ d} S   \text {, 高斯公式} $$

\[\iiint _ { \Omega } \left( \frac { \partial {P} } { \partial {x} } + \frac { \partial {Q} } { \partial {y} } + \frac { \partial {R} }{ \partial {z} } \right) \mathrm { d } V = \oint _ { \partial \Omega } ( P \cos \alpha + Q \cos \beta + R \cos \gamma ) \mathrm{ d} S \text {, 高斯公式} \]

posted @ 2020-08-20 10:50  fly_bk  阅读(238)  评论(0)    收藏  举报