二项式反演

引入

当我在网上查找关于二项式反演的博客时, 总是只看到两个公式, 一个原式, 一个推论(1), 所以这篇博客主要是引出推论(2), 并且将其证明。

前两个式子

原式:

\[{\large f(n) = \sum \limits_{i = 0}^{n} \binom{n}{i}g(i) \Leftrightarrow g(n) = \sum \limits_{i = 0}^{n}(-1)^{n - i}\binom{n}{i}f(i)} \]

推论(1):

\[{\large f(n) = \sum \limits_{i = m}^{n} \binom{n}{i}g(i) \Leftrightarrow g(n) = \sum \limits_{i = m}^{n}(-1)^{n - i}\binom{n}{i}f(i)} \]

这两个式子网上很多人证明, 这里也就不证了。
最关键的, 还是最后一个式子。

最后一个式子

推论(2):

\[{\large f(n) = \sum \limits_{i = n}^{m} \binom{i}{n}g(i) \Leftrightarrow g(n) = \sum \limits_{i = n}^{m}(-1)^{i - n}\binom{i}{n}f(i)} \]

证明:

\[{\large f(n) = \sum \limits_{i = n}^{m} \binom{i}{n}g(i) \Leftrightarrow g(n) = \sum \limits_{i = n}^{m}(-1)^{i - n}\binom{i}{n}f(i)} \]

若原式正确, 则有

\[{\large g(n) = \sum \limits_{i = n}^{m}(-1)^{i - n}\binom{i}{n}f(i)}\large\Leftrightarrow {\large g(n) = \sum \limits_{i = n}^{m}(-1)^{i - n}\binom{i}{n}\sum \limits_{j = i}^{m} \binom{j}{i}g(j)} \]

\[\large\therefore {\large g(n) = \sum \limits_{i = n}^{m}(-1)^{i - n}\binom{i}{n}\sum \limits_{j = i}^{m} \binom{j}{i}g(j)} \]

\[{\large = \sum \limits_{i = n}^{m} \sum\limits_{j = i}^{m} (-1)^{i - n}\binom{i}{n}\binom{j}{i}g(j)} \]

\[{\large = \sum \limits_{j = n}^{m} \sum\limits_{i = n}^{j} (-1)^{i - n}\binom{i}{n}\binom{j}{i}g(j)} \]

\[{\large = \sum \limits_{j = n}^{m} g(j) \sum\limits_{i = n}^{j} (-1)^{i - n}\binom{i}{n}\binom{j}{i}} \]

\[{\large = \sum \limits_{j = n}^{m} g(j) \sum\limits_{i = n}^{j} (-1)^{i - n}\binom{i}{n}\binom{j}{i}} \]

\[{\large = \sum \limits_{j = n}^{m} g(j) \sum\limits_{i = n}^{j} (-1)^{i - n}\frac{i!}{n!(i-n)!}\frac{j!}{i!(j-i)!}} \]

\[{\large = \sum \limits_{j = n}^{m} g(j) \sum\limits_{i = n}^{j} (-1)^{i - n}\frac{1}{n!(i-n)!}\frac{j!}{(j-i)!}} \]

\[{\large = \sum \limits_{j = n}^{m} g(j) \sum\limits_{i = n}^{j} (-1)^{i - n}\frac{(j-n)!}{n!(i-n)!}\frac{j!}{(j-i)!(j-n)!}} \]

\[{\large = \sum \limits_{j = n}^{m} g(j) \sum\limits_{i = n}^{j} (-1)^{i - n}\frac{(j-n)!}{(j-i)!(i-n)!}\frac{j!}{n!(j-n)!}} \]

\[{\large = \sum \limits_{j = n}^{m} g(j) \sum\limits_{i = n}^{j} (-1)^{i - n}\binom{j - n}{i - n}\binom{j}{n}} \]

\[{\large = \sum \limits_{j = n}^{m} g(j)\binom{j}{n} \sum\limits_{i = n}^{j} (-1)^{i - n}\binom{j - n}{i - n}} \]

\[{\large = \sum \limits_{j = n}^{m} g(j)\binom{j}{n} \sum\limits_{i = 0}^{j - n} (-1)^{i}\binom{j - n}{i}} \]

\[{\large 设k=j - n} \]

\[{\large g(n) = \sum \limits_{j = n}^{m} g(j)\binom{j}{n} \sum\limits_{i = 0}^{k} (-1)^{i}\binom{k}{i}} \]

\[{\large 又\because \sum\limits_{i = 0}^{k} (-1)^{i}\binom{k}{i} = } {\large \begin{aligned} \left \{ \begin{aligned} 0, k\neq0,\\ 1, k=0. \end{aligned} \right. \end{aligned} } \]

\[{\large \therefore 当且仅当k = 0, 即j = n时\sum\limits_{i = 0}^{k} (-1)^{i}\binom{k}{i} = 1} \]

\[{\large \therefore g(n) = g(n)\binom{n}{n} = g(n)} \]

\[{\large \therefore 原命题显然成立} \]

至此, 二项式反演的三个式子都弄完了, 至于第三个式子的应用。。。
找到了

posted @ 2021-12-14 16:57  小篪篪  阅读(54)  评论(0)    收藏  举报
Live2D