逆元
//求逆元
//扩展gcd
//1.65s
# include <bits/stdc++.h>
using namespace std;
int exgcd(int a,int b,int &x,int &y)
{
if (b==0) { x=1,y=0;return a; }
int d=exgcd(b,a%b,x,y);
int z=x;x=y;y=z-y*(a/b);
return d;
}
int main()
{
int a,b;
scanf("%d %d",&a,&b);
int x,y;
exgcd(a,b,x,y);
if(x<0) x+=b;/**/
printf("%d",x);
return 0;
}
//费马小定理
//p为质数
//2.22s
# include <bits/stdc++.h>
using namespace std;
int gcd(int a,int b)
{
return b?gcd(b,a%b):a;
}
int mul(int a,int b,int mod)
{
int res=0;
while(b){
if(b&1) res=(res+a)%mod;
a=(a+a)%mod;
b>>=1;
}
return res;
}
int quick_pow(int a,int b,int mod)
{
int ret=1;
while(b){
if(b&1) ret=mul(ret,a,mod);
a=mul(a,a,mod);
b>>=1;
}
return ret;
}
int main()
{
int n,p;
scanf("%lld %lld",&n,&p);
int d=quick_pow(n,p-2,p);
printf("%d\n",d);
return 0;
}
//线性求逆元
//500ms
# include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int MAXN=3e6+100;
LL Inv[MAXN];
int main()
{
LL n,p;
scanf("%lld %lld",&n,&p);
Inv[1]=1;
printf("1\n");
for(int i=2;i<=n;i++){
Inv[i]=(p-p/i)*Inv[p%i]%p;
printf("%lld\n",Inv[i]);
}
return 0;
}
//阶乘逆元
# include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int MAXN=3e6+100;
LL fact[MAXN];
LL Inv[MAXN];
int exgcd(int a,int b,int &x,int &y)
{
if (b==0) { x=1,y=0;return a; }
int d=exgcd(b,a%b,x,y);
int z=x;x=y;y=z-y*(a/b);
return d;
}
int inv(int b,int p)
{
int a,k;
exgcd(b,p,a,k);
if(a<0) a+=p;
return a;
}
void init(int n,int mod)
{
fact[0]=1;
for(int i=1;i<=n;i++) fact[i]=fact[i-1]*i%mod;
Inv[n]=inv(fact[n],mod);
for(int i=n-1;i>=0;i--) Inv[i]=Inv[i+1]*(i+1)%mod;
return ;
}
int main()
{
int n,p;
scanf("%d %d",&n,&p);
init(n,p);
for(int i=1;i<=100;i++)
cout<<i<<" "<<fact[i]<<" "<<Inv[i]<<endl;
}
浙公网安备 33010602011771号