PL-SVO公式推导及代码解析:地图点重投影和特征对齐

对当前帧进行地图点重投影和特征对齐

  // map reprojection & feature alignment
  SVO_START_TIMER("reproject");
  reprojector_.reprojectMap(new_frame_, overlap_kfs_);
  SVO_STOP_TIMER("reproject");

在processframe函数中在进行初始的稀疏图像对齐之后,进一步进行地图投影和特征对齐,对新一帧图像添加特征点,由reprojectMap接口进入

Reprojector reprojector_; //把其它关键帧中的点投影到当前帧中

FramePtr new_frame_; // 当前帧
vector< pair<FramePtr,size_t> > overlap_kfs_;  // 具有重叠视野的所有关键帧。 配对数字指明观察到的公共地图点数。

void Reprojector::reprojectMap(
    FramePtr frame,
    std::vector< std::pair<FramePtr,std::size_t> >& overlap_kfs)
{
  resetReprojGrid();
resetReprojGrid(); // 重置函数
  // Identify those Keyframes which share a common field of view.
  SVO_START_TIMER("reproject_kfs");
  list< pair<FramePtr,double> > close_kfs;
  map_.getCloseKeyframes(frame, close_kfs);

void Map::getCloseKeyframes(
const FramePtr& frame,
std::list< std::pair<FramePtr,double> >& close_kfs);

const FramePtr& frame;    //当前图像帧

std::list< std::pair<FramePtr,double> >& close_kfs  ;///存储和当前帧接近的关键帧指针以及它们之间的距离。


根据它们的接近程度对KF进行重叠排序(列表中的第二个值)
  close_kfs.sort(boost::bind(&std::pair<FramePtr, double>::second, _1) <
                 boost::bind(&std::pair<FramePtr, double>::second, _2));

重新投影具有重叠的最近N kfs的所有地图特征。

  size_t n_kfs = 0;
  overlap_kfs.reserve(options_.max_n_kfs);
  for(auto it_frame=close_kfs.begin(), ite_frame=close_kfs.end();
      it_frame!=ite_frame && n_kfs<options_.max_n_kfs; ++it_frame, ++n_kfs)
  {
    FramePtr ref_frame = it_frame->first;
    // add the current frame to the (output) list of keyframes with overlap
    // initialize the counter of candidates from this frame (2nd element in pair) to zero
    overlap_kfs.push_back(pair<FramePtr,size_t>(ref_frame,0));
    // Consider for candidate each mappoint in the ref KF that the current (input) KF observes
    // We only store in which grid cell the points fall.
    // Add each corresponding valid new Candidate to its cell in the grid.
    int num_pt_success = setKfCandidates( frame, ref_frame->pt_fts_ );
    overlap_kfs.back().second += num_pt_success;
    // Add each line segment in the ref KF that the current (input) KF observes
    int num_seg_success = setKfCandidates( frame, ref_frame->seg_fts_ );
    overlap_kfs.back().second += num_seg_success;
  }
  SVO_STOP_TIMER("reproject_kfs");
考虑当前(输入)KF观察到的参考KF中的每个mappoint的候选者

我们只存储点落在哪个网格单元格中。

将每个对应的有效新Candidate添加到网格中的单元格中。

template<class FeatureT>
int Reprojector::setKfCandidates(FramePtr frame, list<FeatureT*> fts)
{
  int candidate_counter = 0;
  for(auto it=fts.begin(), ite_ftr=fts.end(); it!=ite_ftr; ++it)
  {
    // check if the feature has a 3D object assigned
    if((*it)->feat3D == NULL)
      continue;
    // make sure we project a point only once
    if((*it)->feat3D->last_projected_kf_id_ == frame->id_)
      continue;
    (*it)->feat3D->last_projected_kf_id_ = frame->id_;
    if(reproject(frame, (*it)->feat3D))
      // increment the number of candidates taken successfully
      candidate_counter++;
  }
  return candidate_counter;
}

int Reprojector::setKfCandidates(FramePtr frame, list<FeatureT*> fts)

把地图点和投影到当前帧中的像素点的匹配对存储到  grid_.cells 中

 
bool Reprojector::reproject(FramePtr frame, Point* point)
{
  // get position in current frame image of the world 3D point
  Vector2d cur_px(frame->w2c(point->pos_));
  if(frame->cam_->isInFrame(cur_px.cast<int>(), 8)) // 8px is the patch size in the matcher
  {
    // get linear index (wrt row-wise vectorized grid matrix)
    // of the image grid cell in which the point px lies
    const int k = static_cast<int>(cur_px[1]/grid_.cell_size)*grid_.grid_n_cols
                + static_cast<int>(cur_px[0]/grid_.cell_size);
    grid_.cells.at(k)->push_back(PointCandidate(point, cur_px));
    return true;
  }
  return false;
}

数据类型的定义

  struct PointCandidate {
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW
    Point* pt;       //!< 3D point.
    Vector2d px;     //!< projected 2D pixel location.
    PointCandidate(Point* pt, Vector2d& px) : pt(pt), px(px) {}
  };
  // A cell is just a list of Reprojector::Candidate
  typedef std::list<PointCandidate, aligned_allocator<PointCandidate> > Cell;
  typedef std::vector<Cell*> CandidateGrid;

  struct LineCandidate {
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW
    LineSeg* ls;       //!< 3D point.
    Vector2d spx;
    Vector2d epx;
    LineCandidate(LineSeg* ls, Vector2d& spx, Vector2d& epx) : ls(ls), spx(spx), epx(epx) {}
  };
  /// The candidate segments are collected in a single list for the whole image.
  /// There is no clear heuristic about how to discretize the image space for the segment case.
  typedef std::list<LineCandidate, aligned_allocator<LineCandidate> > LineCandidates;
  typedef std::vector<LineCandidates*> LineCandidateGrid;

  /// The grid stores a set of candidate matches. For every grid cell we try to find one match.
  struct Grid
  {
    CandidateGrid cells;
    vector<int> cell_order;
    int cell_size;
    int grid_n_cols;
    int grid_n_rows;
  };

  struct GridLs
  {
    LineCandidateGrid cells;
    vector<int> cell_order;
    int cell_size;
    int grid_n_cols;
    int grid_n_rows;
  };

  Grid    grid_;
  GridLs  gridls_;
  Matcher matcher_;
  Map&    map_;

现在投影所有地图坐标

点坐标

  // Now project all map candidates
  // (candidates in the map are created from converged seeds)
  SVO_START_TIMER("reproject_candidates");
  // Point candidates
  // (same logic as above to populate the cell grid but taking candidate points from the map object)
  setMapCandidates(frame, map_.point_candidates_);

线坐标

  // Segment candidates
  setMapCandidates(frame, map_.segment_candidates_);
  SVO_STOP_TIMER("reproject_candidates");

  Map&    map_;  //地图类

 MapPointCandidates point_candidates_;   //  收敛的3D点的容器,尚未分配给两个关键帧。

MapSegmentCandidates segment_candidates_;    /////尚未分配给两个关键帧的融合3D点的容器。

class MapPointCandidates
{
public:
  typedef pair<Point*, PointFeat*> PointCandidate;
  typedef list<PointCandidate> PointCandidateList;

  /// The depth-filter is running in a parallel thread and fills the canidate list.
  /// This mutex controls concurrent access to point_candidates.
  boost::mutex mut_;

  /// Candidate points are created from converged seeds.
  /// Until the next keyframe, these points can be used for reprojection and pose optimization.
  PointCandidateList candidates_;
  list< Point* > trash_points_;

  MapPointCandidates();
  ~MapPointCandidates();

  /// Add a candidate point.
  void newCandidatePoint(Point* point, double depth_sigma2);

  /// Adds the feature to the frame and deletes candidate from list.
  void addCandidatePointToFrame(FramePtr frame);

  /// Remove a candidate point from the list of candidates.
  bool deleteCandidatePoint(Point* point);

  /// Remove all candidates that belong to a frame.
  void removeFrameCandidates(FramePtr frame);

  /// Reset the candidate list, remove and delete all points.
  void reset();

  void deleteCandidate(PointCandidate& c);

  void emptyTrash();
};

 

void MapPointCandidates::deleteCandidate(PointCandidate& c)
{
  // camera-rig: another frame might still be pointing to the candidate point
  // therefore, we can't delete it right now.
  delete c.second; c.second=NULL;
  c.first->type_ = Point::TYPE_DELETED;
  trash_points_.push_back(c.first);
}

 


template<class MapCandidatesT>
void Reprojector::setMapCandidates(FramePtr frame, MapCandidatesT &map_candidates)
{
  boost::unique_lock<boost::mutex> lock(map_candidates.mut_); // the mutex will be unlocked when out of scope
  auto it=map_candidates.candidates_.begin();
  while(it!=map_candidates.candidates_.end())
  {
    if(!reproject(frame, it->first))
    {
      // if the reprojection of the map candidate point failed,
      // increment the counter of failed reprojections (assess the point quality)
      it->first->n_failed_reproj_ += 3;
      if(it->first->n_failed_reproj_ > 30)
      {
        // if the reprojection failed too many times, remove the map candidate point
        map_candidates.deleteCandidate(*it);
        it = map_candidates.candidates_.erase(it);
        continue;
      }
    }
    ++it;
  } // end-while-loop
}

现在我们浏览每个网格单元并选择一个匹配点。最后,我们每个细胞最多应该有一个重新投射点。


 

  SVO_START_TIMER("feature_align");
  for(size_t i=0; i<grid_.cells.size(); ++i)
  {
    // we prefer good quality points over unkown quality (more likely to match)
    // and unknown quality over candidates (position not optimized)
    // we use the random cell order to visit cells uniformly on the grid
    if(refineBestCandidate(*grid_.cells.at(grid_.cell_order[i]), frame))
      ++n_matches_;
    if(n_matches_ > (size_t) Config::maxFts())
      break; // the random visit order of cells assures uniform distribution
             // of the features even if we break early (maxFts reached soon)
  }

我们更喜欢质量好的点而不是未知质量(更可能匹配)和未知质量而不是候选者(位置未优化)

我们使用随机单元格顺序在网格上统一访问单元格


bool Reprojector::refineBestCandidate(Cell& cell, FramePtr frame)
{
  // sort the candidates inside the cell according to their quality
  cell.sort(boost::bind(&Reprojector::pointQualityComparator, _1, _2));
  Cell::iterator it=cell.begin();
  // in principle, iterate through the whole list of features in the cell
  // in reality, there is maximum one point per cell, so the loop returns if successful
  while(it!=cell.end())
  {
    ++n_trials_;
    // Try to refine the point feature in frame from current initial estimate
    bool success = refine( it->pt, it->px, frame );
    // Failed or not, this candidate was finally being erased in original code
    it = cell.erase(it); // it takes next position in the list as output of .erase
    if(success)
      // Maximum one point per cell.
      return true;
  }
  return false;
}

尝试从当前初始估计中细化帧中的点要素

bool Reprojector::refine(Point* pt, Vector2d& px_est, FramePtr frame)
{
  if(pt->type_ == Point::TYPE_DELETED)
    return false;

  bool found_match = true;
  if(options_.find_match_direct)
    // refine px position in the candidate by directly applying subpix refinement
    // internally, it is optimizing photometric error
    // of the candidate px patch wrt the closest-view reference feature patch
    found_match = matcher_.findMatchDirect(*pt, *frame, px_est);
  // TODO: What happens if options_.find_match_direct is false??? Shouldn't findEpipolarMatchDirect be here?

  // apply quality logic
  {
    if(!found_match)
    {
      // if there is no match found for this point, decrease quality
      pt->n_failed_reproj_++;
      // consider removing the point from map depending on point type and quality
      if(pt->type_ == Point::TYPE_UNKNOWN && pt->n_failed_reproj_ > 15)
        map_.safeDeletePoint(pt);
      if(pt->type_ == Point::TYPE_CANDIDATE  && pt->n_failed_reproj_ > 30)
        map_.point_candidates_.deleteCandidatePoint(pt);
      return false;
    }
    // if there is successful match found for this point, increase quality
    pt->n_succeeded_reproj_++;
    if(pt->type_ == Point::TYPE_UNKNOWN && pt->n_succeeded_reproj_ > 10)
      pt->type_ = Point::TYPE_GOOD;
  }

  // create new point feature for this frame with the refined (aligned) candidate position in this image
  PointFeat* new_feature = new PointFeat(frame.get(), px_est, matcher_.search_level_);
  frame->addFeature(new_feature);

  // Here we add a reference in the feature to the 3D point, the other way
  // round is only done if this frame is selected as keyframe.
  // TODO: why not give it directly to the constructor PointFeat(frame.get(), pt, it->px, matcher_.serach_level_)
  new_feature->feat3D = pt;

  PointFeat* pt_ftr = static_cast<PointFeat*>( matcher_.ref_ftr_ );
  if(pt_ftr != NULL)
  {
    if(pt_ftr->type == PointFeat::EDGELET)
    {
      new_feature->type = PointFeat::EDGELET;
      new_feature->grad = matcher_.A_cur_ref_*pt_ftr->grad;
      new_feature->grad.normalize();
    }
  }

  // If the keyframe is selected and we reproject the rest, we don't have to
  // check this point anymore.
//  it = cell.erase(it);

  // Maximum one point per cell.
  return true;
}

通过直接应用子像素细化来细化候选者中的px位置

在内部,它正在优化最近视图参考特征补丁的候选px补丁的光度误差

bool Matcher::findMatchDirect(
    const Point& pt,
    const Frame& cur_frame,
    Vector2d& px_cur)
{
  // get reference feature in closest view (frame)
  if(!pt.getCloseViewObs(cur_frame.pos(), ref_ftr_))
    return false;

  if(!ref_ftr_->frame->cam_->isInFrame(
      ref_ftr_->px.cast<int>()/(1<<ref_ftr_->level), halfpatch_size_+2, ref_ftr_->level))
    return false;

  // warp affine
  warp::getWarpMatrixAffine(
      *ref_ftr_->frame->cam_, *cur_frame.cam_, ref_ftr_->px, ref_ftr_->f,
      (ref_ftr_->frame->pos() - pt.pos_).norm(),
      cur_frame.T_f_w_ * ref_ftr_->frame->T_f_w_.inverse(), ref_ftr_->level, A_cur_ref_);
  search_level_ = warp::getBestSearchLevel(A_cur_ref_, Config::nPyrLevels()-1);
  // is img of ref_frame fully available at any time? that means keeping stored previous images, for how long?
  warp::warpAffine(A_cur_ref_, ref_ftr_->frame->img_pyr_[ref_ftr_->level], ref_ftr_->px,
                   ref_ftr_->level, search_level_, halfpatch_size_+1, patch_with_border_);
  // patch_with_border_ stores the square patch (of pixel intensities) around the reference feature
  // once the affine transformation is applied to the original reference image
  // the border is necessary for gradient operations (intensities at the border must be precomputed by interpolation too!)
  createPatchFromPatchWithBorder();

  // px_cur should be set
  Vector2d px_scaled(px_cur/(1<<search_level_));

  bool success = false;
  PointFeat* pt_ftr = static_cast<PointFeat*>(ref_ftr_);
  if(pt_ftr->type == PointFeat::EDGELET)
  {
    Vector2d dir_cur(A_cur_ref_*pt_ftr->grad);
    dir_cur.normalize();
    success = feature_alignment::align1D(
          cur_frame.img_pyr_[search_level_], dir_cur.cast<float>(),
          patch_with_border_, patch_, options_.align_max_iter, px_scaled, h_inv_);
  }
  else
  {
    success = feature_alignment::align2D(
      cur_frame.img_pyr_[search_level_], patch_with_border_, patch_,
      options_.align_max_iter, px_scaled);
  }
  px_cur = px_scaled * (1<<search_level_);
  return success;
}

特征细化

bool align2D(
    const cv::Mat& cur_img,
    uint8_t* ref_patch_with_border,
    uint8_t* ref_patch,
    const int n_iter,
    Vector2d& cur_px_estimate,
    bool no_simd)
{
#ifdef __ARM_NEON__
  if(!no_simd)
    return align2D_NEON(cur_img, ref_patch_with_border, ref_patch, n_iter, cur_px_estimate);
#endif

  const int patch_size_ = 8;
  Patch patch( patch_size_, cur_img );
  bool converged=false;

  /* Precomputation step: derivatives in reference patch */
  // compute derivative of template and prepare inverse compositional
  float __attribute__((__aligned__(16))) ref_patch_dx[patch.area];
  float __attribute__((__aligned__(16))) ref_patch_dy[patch.area];
  Matrix3f H; H.setZero();

  // compute gradient and hessian
  const int ref_step = patch_size_+2; // assumes ref_patch_with_border comes from a specific Mat object with certain size!!! Bad way to do it?
  float* it_dx = ref_patch_dx;
  float* it_dy = ref_patch_dy;
  for(int y=0; y<patch_size_; ++y)
  {
    uint8_t* it = ref_patch_with_border + (y+1)*ref_step + 1;
    for(int x=0; x<patch_size_; ++x, ++it, ++it_dx, ++it_dy)
    {
      Vector3f J;
      J[0] = 0.5 * (it[1] - it[-1]);
      J[1] = 0.5 * (it[ref_step] - it[-ref_step]);
      J[2] = 1;
      *it_dx = J[0];
      *it_dy = J[1];
      H += J*J.transpose();
    }
  }
  Matrix3f Hinv = H.inverse();
  float mean_diff = 0;

  /* Iterative loop: residues and updates with patch in current image */
  // Compute pixel location in new image:
  float u = cur_px_estimate.x();
  float v = cur_px_estimate.y();

  // termination condition
  const float min_update_squared = 0.03*0.03;
  const int cur_step = cur_img.step.p[0];
//  float chi2 = 0;
  Vector3f update; update.setZero();
  for(int iter = 0; iter<n_iter; ++iter)
  {
    // TODO very rarely this can happen, maybe H is singular? should not be at corner.. check
//    if(isnan(cur_px_estimate[0]) || isnan(cur_px_estimate[1]))
//      return false;

    // set patch position for current feature location
    patch.setPosition( cur_px_estimate );
    // abort the optimization if the patch does not fully lie within the image
    if(!patch.isInFrame(patch.halfsize))
      break;
    // compute interpolation weights
    patch.computeInterpWeights();

    // set ROI in the current image to traverse
    patch.setRoi();
    // loop through search_patch, interpolate
    uint8_t* it_ref = ref_patch;
    float* it_ref_dx = ref_patch_dx;
    float* it_ref_dy = ref_patch_dy;
    uint8_t* ptr; // pointer that will point to memory locations of the ROI (same memory as for the original full cur_img)
//    float new_chi2 = 0.0;
    Vector3f Jres; Jres.setZero();
    for(int y=0; y<patch.size; ++y)
    {
      // get the pointer to first element in row y of the patch ROI
      ptr = patch.roi.ptr(y);
      for(int x=0; x<patch.size; ++x, ++ptr, ++it_ref, ++it_ref_dx, ++it_ref_dy)
      {
        float search_pixel = patch.wTL*ptr[0] + patch.wTR*ptr[1] + patch.wBL*ptr[cur_step] + patch.wBR*ptr[cur_step+1];
        float res = search_pixel - *it_ref + mean_diff;
        Jres[0] -= res*(*it_ref_dx);
        Jres[1] -= res*(*it_ref_dy);
        Jres[2] -= res;
//        new_chi2 += res*res;
      }
    }


/*
    if(iter > 0 && new_chi2 > chi2)
    {
#if SUBPIX_VERBOSE
      cout << "error increased." << endl;
#endif
      u -= update[0];
      v -= update[1];
      break;
    }
    chi2 = new_chi2;
*/
    update = Hinv * Jres;
    u += update[0];
    v += update[1];
    cur_px_estimate = Vector2d(u,v);
    mean_diff += update[2];

#if SUBPIX_VERBOSE
    cout << "Iter " << iter << ":"
         << "\t u=" << u << ", v=" << v
         << "\t update = " << update[0] << ", " << update[1]
//         << "\t new chi2 = " << new_chi2 << endl;
#endif

    if(update[0]*update[0]+update[1]*update[1] < min_update_squared)
    {
#if SUBPIX_VERBOSE
      cout << "converged." << endl;
#endif
      converged=true;
      break;
    }
  }

  cur_px_estimate << u, v;
  return converged;
}

//为当前创建新的点特征,并在此图像中使用精确(对齐)的位置坐标

  PointFeat* new_feature = new PointFeat(frame.get(), px_est, matcher_.search_level_);
  frame->addFeature(new_feature);

在这里,我们将特征中的引用添加到3D点,只有在选择此帧作为关键帧时才进行另一种方式。


  if(pt_ftr != NULL)
  {
    if(pt_ftr->type == PointFeat::EDGELET)
    {
      new_feature->type = PointFeat::EDGELET;
      new_feature->grad = matcher_.A_cur_ref_*pt_ftr->grad;
      new_feature->grad.normalize();
    }
  }

尝试优化每个细分线段坐标

即使我们提前破坏,细胞的随机访问顺序也能确保特征的均匀分布(maxFts即将到达)

  for(size_t i=0; i<gridls_.cells.size(); ++i)
  {
    if(refineBestCandidate(*gridls_.cells.at(gridls_.cell_order[i]), frame))
      ++n_ls_matches_;
    if(n_ls_matches_ > (size_t) Config::maxFtsSegs())
      break; // the random visit order of cells assures uniform distribution
             // of the features even if we break early (maxFts reached soon)
  }
  /*for(auto it = lines_.begin(), ite = lines_.end(); it!=ite; ++it)
  {
    if(refine(it->ls,it->spx,it->epx,frame))
      ++n_ls_matches_;
    if(n_ls_matches_ > (size_t) Config::maxFtsSegs())
      break;
  }*/
  SVO_STOP_TIMER("feature_align");

特征细化结束


 

 

 

 
posted @ 2019-04-16 22:53  feifanren  阅读(808)  评论(0编辑  收藏  举报