2016年11月25日

Linux rescue模式备份文件和数据

摘要: 这是一个悲伤地故事。我们组对外提供软件demo的服务器出了一点小小的问题(一点都不小),/lib文件夹不知道被谁恶意删除了,也有可能是不小心。这导致了什么问题呢? 1. 网卡无法识别,不能远程连接。只剩127.0.0.1喽 2. usb盘无法识别,也就是说重要的文件无法备份。 老大让我想想解决办法, 阅读全文

posted @ 2016-11-25 17:28 enigmatic_child 阅读(1239) 评论(1) 推荐(0)

Oracle专题四之Oracle体系结构

摘要: Oracle体系结构 终于迎来了Oracle最重要的一章。当然,大多数研发可能都不太会关心Oracle的体系结构,因为只需要会sql语句就OK了。不过,个人觉得,简单的了解仍然是有必要的。 Oracle体系结构概览 数据库服务器包含两个部分: 1. oracle实例 SGA内存区域与后台进程 2. 阅读全文

posted @ 2016-11-25 17:26 enigmatic_child 阅读(234) 评论(0) 推荐(0)

Oracle专题二之Oracle的启动关闭与开启监听

摘要: Oracle的启动 sqlplus sys/123456 as sysdba 1. nomount 模式 (加载实例和spfile) startup nomount 只启动实例(装载实例和打开参数文件) alter database mount 改变数据库从nomount状态到mount状态 2. 阅读全文

posted @ 2016-11-25 17:25 enigmatic_child 阅读(185) 评论(0) 推荐(0)

Oracle专题三之Oracle基础操作、DDL/DCL/DML以及约束和常用函数

摘要: Oracle基础操作 查看进程 ps –ef | grep ora 登陆数据库 sqlplus sys/123456 as sysdba sqlplus scott/tiger@db88 切换用户 conn username; 查看用户 show user; 查看当前登录用户 select user 阅读全文

posted @ 2016-11-25 17:25 enigmatic_child 阅读(306) 评论(0) 推荐(0)

Elasticsearch使用SSD进行冷热分离最大化利用资源

摘要: Elasticsearch使用SSD进行冷热分离 为了不浪费服务器资源(每台机器上均配置有SSD和大存储,且内存配置较高),提高ES读写性能,我们尝试进行了ES集群冷热分离的配置。 测试环境 两台机器,均配置有SSD和SATA盘。每台机器上运行两个ES实例,其中一个实例配置data目录为SSD 1. 阅读全文

posted @ 2016-11-25 17:19 enigmatic_child 阅读(523) 评论(0) 推荐(0)

Oracle专题一之Oracle的安装

摘要: 10g安装 1. 配置YUM源(国内阿里的还不错,也可以配置挂载的yum源) 2. yum install y binutils compat db control center gcc glibc libXp libstdc++ libstdc++ devel make openmotif sys 阅读全文

posted @ 2016-11-25 17:19 enigmatic_child 阅读(205) 评论(0) 推荐(0)

python与R的安装

摘要: 主要记录了最近工作要用到的一些测试环境的搭建,记下来以后随时随地都可以搭建这样一个环境。没什么太多技术含量,主要是为了方便。 一. 操作系统安装 下载操作系统镜像(虚拟机中安装的,毕竟只是测试用) 修改软件源,这里用的是aliyun的,亲测可用 禁止guest登录(适合轻微强迫症患者) 首先安装vi 阅读全文

posted @ 2016-11-25 17:11 enigmatic_child 阅读(909) 评论(0) 推荐(1)

机器学习初体验

摘要: 一.R语言基础 1.1 R的数据结构 向量、数据框、矩阵属于最常用的R数据结构,关于基础这里不多讲,简单概括一下 向量,简单来说就是一维数组 矩阵,就是二维数组 数据框,简单理解就是一张excel表,或者理解为关系型数据库的table 1.2 数据读取 读取csv文件: read.csv(file= 阅读全文

posted @ 2016-11-25 16:43 enigmatic_child 阅读(229) 评论(0) 推荐(0)

动态规划之多重背包问题

摘要: 多重背包问题 1. 有N种物品和一个容量为V的背包。第i种物品最多有n[i]件可用,每件费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。 这题目和完全背包问题很类似。基本的方程只需将完全背包问题的方程略微一改即可,因为对于第i种物品有n[i 阅读全文

posted @ 2016-11-25 16:12 enigmatic_child 阅读(146) 评论(0) 推荐(0)

动态规划之01背包和完全背包

摘要: 01背包问题(注意看注释) 1. 有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。每种物品仅有一件,可以选择放或不放。求解将哪些物品装入背包可使价值总和最大。 f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程是 f[i][v]=ma 阅读全文

posted @ 2016-11-25 16:11 enigmatic_child 阅读(194) 评论(0) 推荐(0)

导航