# 二、实验内容

1、实现高斯朴素贝叶斯算法。
2、熟悉sklearn库中的朴素贝叶斯算法；
3、针对iris数据集，应用sklearn的朴素贝叶斯算法进行类别预测。
4、针对iris数据集，利用自编朴素贝叶斯算法进行类别预测。

# 三、实验报告要求

1、对照实验内容，撰写实验过程、算法及测试结果；
2、代码规范化：命名规则、注释；
3、分析核心算法的复杂度；
4、查阅文献，讨论各种朴素贝叶斯算法的应用场景；
5、讨论朴素贝叶斯算法的优缺点。

# 四、实验内容及结果

1.

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

from sklearn.model_selection import train_test_split

from collections import Counter
import math


# data
def create_data():
df = pd.DataFrame(iris.data, columns=iris.feature_names)
df['label'] = iris.target
df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']
data = np.array(df.iloc[:100, :])
# print(data)
return data[:,:-1], data[:,-1]


X, y = create_data()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)


X_test[0], y_test[0]


class NaiveBayes:
def __init__(self):
self.model = None

# 数学期望
@staticmethod
def mean(X):
return sum(X) / float(len(X))

# 标准差（方差）
def stdev(self, X):
avg = self.mean(X)
return math.sqrt(sum([pow(x-avg, 2) for x in X]) / float(len(X)))

# 概率密度函数
def gaussian_probability(self, x, mean, stdev):
exponent = math.exp(-(math.pow(x-mean,2)/(2*math.pow(stdev,2))))
return (1 / (math.sqrt(2*math.pi) * stdev)) * exponent

# 处理X_train
def summarize(self, train_data):
summaries = [(self.mean(i), self.stdev(i)) for i in zip(*train_data)]
return summaries

# 分类别求出数学期望和标准差
def fit(self, X, y):
labels = list(set(y))
data = {label:[] for label in labels}
for f, label in zip(X, y):
data[label].append(f)
self.model = {label: self.summarize(value) for label, value in data.items()}
return 'gaussianNB train done!'

# 计算概率
def calculate_probabilities(self, input_data):
# summaries:{0.0: [(5.0, 0.37),(3.42, 0.40)], 1.0: [(5.8, 0.449),(2.7, 0.27)]}
# input_data:[1.1, 2.2]
probabilities = {}
for label, value in self.model.items():
probabilities[label] = 1
for i in range(len(value)):
mean, stdev = value[i]
probabilities[label] *= self.gaussian_probability(input_data[i], mean, stdev)
return probabilities

# 类别
def predict(self, X_test):
# {0.0: 2.9680340789325763e-27, 1.0: 3.5749783019849535e-26}
label = sorted(self.calculate_probabilities(X_test).items(), key=lambda x: x[-1])[-1][0]
return label

def score(self, X_test, y_test):
right = 0
for X, y in zip(X_test, y_test):
label = self.predict(X)
if label == y:
right += 1

return right / float(len(X_test))


model = NaiveBayes()


model.fit(X_train, y_train)


print(model.predict([4.4,  3.2,  1.3,  0.2]))


model.score(X_test, y_test)


from sklearn.naive_bayes import GaussianNB


clf = GaussianNB()
clf.fit(X_train, y_train)


clf.score(X_test, y_test)


clf.predict([[4.4, 3.2, 1.3, 0.2]])


from sklearn.naive_bayes import BernoulliNB, MultinomialNB # 伯努利模型和多项式模型


# 五、实验小结

## 2、讨论朴素贝叶斯算法的优缺点。

1. 朴素贝叶斯模型发源于古典数学理论，有着坚实的数学基础，以及稳定的分类效率；
2. 对大数量训练和查询时具有较高的速度。即使使用超大规模的训练集，针对每个项目通常也只会有相对较少的特征数，并且对项目的训练和分类也仅仅是特征概率的数学运算而已；
3. 对小规模的数据表现很好，能个处理多分类任务，适合增量式训练(即可以实时的对新增的样本进行训练)；
4. 对缺失数据不太敏感，算法也比较简单，常用于文本分类；
5. 朴素贝叶斯对结果解释容易理解。
缺点
6. 需要计算先验概率；
7. 分类决策存在错误率；
8. 对输入数据的表达形式很敏感；
9. 由于使用了样本属性独立性的假设，所以如果样本属性有关联时其效果不好。
posted @ 2021-06-28 10:40  计算机181胡佛  阅读(62)  评论(0编辑  收藏  举报