摘要: SCConv:用于特征冗余的空间和通道重建卷积 摘要 卷积神经网络(CNN)在各种计算机视觉任务中取得了显着的性能,但这是以巨大的计算资源为代价的,部分原因是卷积层提取了冗余特征。最近的工作要么压缩训练有素的大型模型,要么探索精心设计的轻量级模型。在本文中,我们尝试利用特征之间的空间和通道冗余进行 阅读全文
posted @ 2023-12-15 13:03 同淋雪 阅读(1876) 评论(0) 推荐(0)
摘要: 注意力机制 一、注意力机制 人可以通过眼睛看到各种各样的事物,感知世界上的大量信息,但可以让自己免受海量信息的干扰,可以选择重要信息而忽视不重要信息。 例如一张图片,我们会把下意识把注意力集中在主体身上,而非背景。 同样,希望网络也具有这种能力,引入注意力机制是对输入进行加权再输出,希望网络关注到的 阅读全文
posted @ 2023-12-15 13:02 同淋雪 阅读(637) 评论(0) 推荐(0)
摘要: Feature map(特征图) 在CNN的每个卷积层,数据以三维形式存在。可以看成是多个二维图片叠在一起,其中每一个称为一个feature map。 在输入层,如果是灰度图片,那就只有一个feature map;如果是彩色图片,一般是三个feature map(红绿蓝)。 在其他层,层与层之间会有 阅读全文
posted @ 2023-12-15 13:00 同淋雪 阅读(528) 评论(0) 推荐(0)