dwtfukgv

导航

统计

BZOJ 1008 [HNOI2008]越狱 (简单排列组合 + 快速幂)

1008: [HNOI2008]越狱

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 10503  Solved: 4558
[Submit][Status][Discuss]

Description

  监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种。如果
相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生越狱

Input

  输入两个整数M,N.1<=M<=10^8,1<=N<=10^12

Output

  可能越狱的状态数,模100003取余

Sample Input

2 3

Sample Output

6

HINT

 

  6种状态为(000)(001)(011)(100)(110)(111)

 

Source

析:很容易知道,一共有 m^n 种方案,然后我们可以求全部都不一样的,也就是m*(m-1)*(m-1)..*(m-1) 也就是m * (m-1)^(n-1)。由于 m 和 n 比较大,所以要用快速幂。

代码如下:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <sstream>
#include <list>
#include <assert.h>
#include <bitset>
#include <numeric>
#define debug() puts("++++")
#define gcd(a, b) __gcd(a, b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a, b, sizeof a)
#define sz size()
#define pu push_up
#define pd push_down
#define cl clear()
#define all 1,n,1
#define FOR(i,x,n)  for(int i = (x); i < (n); ++i)
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std;

typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e17;
const double inf = 1e20;
const double PI = acos(-1.0);
const double eps = 1e-3;
const int maxn = 2e5 + 10;
const int maxm = 3e5 + 10;
const int mod = 100003;
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, -1, 0, 1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c) {
  return r >= 0 && r < n && c >= 0 && c < m;
}

LL fast_pow(LL a, LL n){
  LL res = 1;
  a %= mod;
  while(n){
    if(n&1)  res = res * a % mod;
    n >>= 1;
    a = a * a % mod;
  }
  return res;
}

int main(){
  LL n, m;
  scanf("%lld %lld", &m, &n);
  LL ans = fast_pow(m, n) - m * fast_pow(m-1, n-1) % mod;
  ans = (ans % mod + mod) % mod;
  printf("%lld\n", ans);
  return 0;
}

  

posted on 2017-11-09 14:03  dwtfukgv  阅读(81)  评论(0编辑  收藏