mapreduce实现学生平均成绩
思路:
首先从文本读入一行数据,按空格对字符串进行切割,切割后包含学生姓名和某一科的成绩,map输出key->学生姓名 value->某一个成绩
然后在reduce里面对成绩进行遍历求和,求平均数,然后输出key->学生姓名 value->平均成绩
源数据:
chines.txt
zhangsan 78 lisi 89 wangwu 96 zhaoliu 67
english.txt
zhangsan 80 lisi 82 wangwu 84 zhaoliu 86
math.txt
zhangsan 88 lisi 99 wangwu 66 zhaoliu 77
源代码:
package com.duking.hadoop;
import java.io.IOException;
import java.util.Iterator;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Mapper.Context;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.util.GenericOptionsParser;
public class Score {
public static class Map extends
Mapper<Object, Text, Text, IntWritable> {
// 实现map函数
public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
// 将输入的纯文本文件的数据转化成String
String line = value.toString();
// 将输入的数据首先按行进行分割
StringTokenizer tokenizerArticle = new StringTokenizer(line); //以空格分隔字符串
// 分别对每一行进行处理
while (tokenizerArticle.hasMoreElements()) {
String strName= tokenizerArticle.nextToken(); // 学生姓名部分
String strScore = tokenizerArticle.nextToken();// 成绩部分
Text name = new Text(strName);
int scoreInt = Integer.parseInt(strScore);
// 输出姓名和成绩
context.write(name, new IntWritable(scoreInt));
}
}
}
public static class Reduce extends
Reducer<Text, IntWritable, Text, IntWritable> {
// 实现reduce函数
public void reduce(Text key, Iterable<IntWritable> values,
Context context) throws IOException, InterruptedException {
int sum = 0;
int count = 0;
Iterator<IntWritable> iterator = values.iterator(); //循环遍历成绩
while (iterator.hasNext()) {
sum += iterator.next().get();// 计算总分
count++;// 统计总的科目数
}
int average = (int) sum / count;// 计算平均成绩
context.write(key, new IntWritable(average));
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
conf.set("mapred.job.tracker", "192.168.60.129:9000");
// 指定带运行参数的目录为输入输出目录
String[] otherArgs = new GenericOptionsParser(conf, args)
.getRemainingArgs();
/*
* 指定工程下的input2为文件输入目录 output2为文件输出目录 String[] ioArgs = new String[] {
* "input2", "output2" };
*
* String[] otherArgs = new GenericOptionsParser(conf, ioArgs)
* .getRemainingArgs();
*/
if (otherArgs.length != 2) { // 判断路径参数是否为2个
System.err.println("Usage: Data Deduplication <in> <out>");
System.exit(2);
}
// set maprduce job name
Job job = new Job(conf, "Score Average");
job.setJarByClass(Score.class);
// 设置Map、Combine和Reduce处理类
job.setMapperClass(Map.class);
job.setCombinerClass(Reduce.class);
job.setReducerClass(Reduce.class);
// 设置输出类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
// 设置输入和输出目录
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}

浙公网安备 33010602011771号