OOP-实验2

实验任务1

源代码T.h,T.cpp,task1.cpp

点击查看代码 T.h
#pragma once

#include <string>

// 类T: 声明
class T
{
    // 对象属性、方法
public:
    T(int x = 0, int y = 0); // 普通构造函数
    T(const T &t);           // 复制构造函数
    T(T &&t);                // 移动构造函数
    ~T();                    // 析构函数

    void adjust(int ratio); // 按系数成倍调整数据
    void display() const;   // 以(m1, m2)形式显示T类对象信息

private:
    int m1, m2;

    // 类属性、方法
public:
    static int get_cnt(); // 显示当前T类对象总数

public:
    static const std::string doc; // 类T的描述信息
    static const int max_cnt;     // 类T对象上限

private:
    static int cnt; // 当前T类对象数目

    // 类T友元函数声明
    friend void func();
};

// 普通函数声明
void func();
点击查看代码 T.cpp
#include "T.h"
#include <iostream>
#include <string>

// 类T实现

// static成员数据类外初始化
const std::string T::doc{"a simple class sample"};
const int T::max_cnt = 999;
int T::cnt = 0;

// 类方法
int T::get_cnt()
{
    return cnt;
}

// 对象方法
T::T(int x, int y) : m1{x}, m2{y}
{
    ++cnt;
    std::cout << "T constructor called.\n";
}

T::T(const T &t) : m1{t.m1}, m2{t.m2}
{
    ++cnt;
    std::cout << "T copy constructor called.\n";
}

T::T(T &&t) : m1{t.m1}, m2{t.m2}
{
    ++cnt;
    std::cout << "T move constructor called.\n";
}

T::~T()
{
    --cnt;
    std::cout << "T destructor called.\n";
}

void T::adjust(int ratio)
{
    m1 *= ratio;
    m2 *= ratio;
}

void T::display() const
{
    std::cout << "(" << m1 << ", " << m2 << ")";
}

// 普通函数实现
void func()
{
    T t5(42);
    t5.m2 = 2049;
    std::cout << "t5 = ";
    t5.display();
    std::cout << '\n';
}
点击查看代码 task1.cpp
#include "T.h"
#include <iostream>

void test_T();

int main()
{
    std::cout << "test Class T: \n";
    test_T();

    std::cout << "\ntest friend func: \n";
    func();
}

void test_T()
{
    using std::cout;
    using std::endl;

    cout << "T info: " << T::doc << endl;
    cout << "T objects'max count: " << T::max_cnt << endl;
    cout << "T objects'current count: " << T::get_cnt() << endl
         << endl;

    T t1;
    cout << "t1 = ";
    t1.display();
    cout << endl;

    T t2(3, 4);
    cout << "t2 = ";
    t2.display();
    cout << endl;

    T t3(t2);
    t3.adjust(2);
    cout << "t3 = ";
    t3.display();
    cout << endl;

    T t4(std::move(t2));
    cout << "t4 = ";
    t4.display();
    cout << endl;

    cout << "test: T objects'current count: " << T::get_cnt() << endl;
}

运行测试截图

屏幕截图 2025-10-22 092316

  • 问题1:T.h中,在类T内部,已声明func是T的友元函数。在类外部,去掉line36,重新编译,程序能否正常运行。如果能,回答YES;如果不能,以截图形式提供编译报错信息,说明原因。

  • 回答:编译报错信息见下图,产生原因是func声明在类T内部,在task1.cpp中调用func时,找不到func的声明。在VSCode上使用C++11标准,为func添加类型为T的参数,则可以正常运行,据此猜测编译器可以通过func的参数,寻找到类T中func的声明。

屏幕截图 2025-10-22 102239

  • 问题2:T.h中,line9-12给出了各种构造函数、析构函数。总结它们各自的功能、调用时机。

  • 回答:line9的函数为普通构造函数,功能是以传入的参数x,y构造类T的对象,在传入0或1或2个int类型的参数时调用;line10的函数是复制构造函数,功能是创建一个和t一样的对象,在需要拷贝对象t时调用;line11的函数是移动构造函数,功能是创建一个新的对象管理t的资源,在不需要t或减少资源开销时调用;line12的函数是析构函数,功能是销毁对象,释放资源,在对象的生命周期结束后自动调用。

  • 问题3:T.cpp中,line13-15,剪切到T.h的末尾,重新编译,程序能否正确编译。如不能,以截图形式给出报错信息,分析原因。

  • 回答:不能正确编译,原因是T.cpptask1.cpp#include "T.h",line13-15代码被多次定义。

屏幕截图 2025-10-22 204005

实验任务2

源代码Complex.h,Complex.cpp,task2.cpp

点击查看代码 Complex.h
#pragma once

#include <string>

class Complex
{
public:
    Complex(double _real = 0, double _imag = 0);
    Complex(const Complex &other);
    double get_real() const;
    double get_imag() const;
    void add(const Complex &other);

    friend void output(const Complex &c);
    friend double abs(const Complex &c);
    friend Complex add(const Complex &c1, const Complex &c2);
    friend bool is_equal(const Complex &c1, const Complex &c2);
    friend bool is_not_equal(const Complex &c1, const Complex &c2);

private:
    double real, imag;

public:
    static const std::string doc;
};

void output(const Complex &c);
double abs(const Complex &c);
Complex add(const Complex &c1, const Complex &c2);
bool is_equal(const Complex &c1, const Complex &c2);
bool is_not_equal(const Complex &c1, const Complex &c2);
点击查看代码 Complex.cpp
#include <iostream>
#include <cmath>
#include "Complex.h"

const std::string Complex::doc = "a simplified complex class";

Complex::Complex(double _real, double _imag) : real{_real}, imag{_imag} {}

Complex::Complex(const Complex &other) : real{other.real}, imag{other.imag} {}

double Complex::get_real() const
{
    return real;
}

double Complex::get_imag() const
{
    return imag;
}

void Complex::add(const Complex &other)
{
    real += other.real;
    imag += other.imag;
}

void output(const Complex &c)
{
    if (c.imag >= 0)
        std::cout << c.real << " + " << c.imag << "i";
    else
        std::cout << c.real << " - " << -c.imag << "i";
}

double abs(const Complex &c)
{
    return std::sqrt(c.real * c.real + c.imag * c.imag);
}

Complex add(const Complex &c1, const Complex &c2)
{
    return Complex(c1.real + c2.real, c1.imag + c2.imag);
}

bool is_equal(const Complex &c1, const Complex &c2)
{
    return (c1.real == c2.real) && (c1.imag == c2.imag);
}

bool is_not_equal(const Complex &c1, const Complex &c2)
{
    return !is_equal(c1, c2);
}
点击查看代码 task2.cpp
// 待补足头文件
#include "Complex.h"
#include <iostream>
#include <iomanip>
#include <complex>

void test_Complex();
void test_std_complex();

int main()
{
    std::cout << "*******测试1: 自定义类Complex*******\n";
    test_Complex();

    std::cout << "\n*******测试2: 标准库模板类complex*******\n";
    test_std_complex();
}

void test_Complex()
{
    using std::boolalpha;
    using std::cout;
    using std::endl;

    cout << "类成员测试: " << endl;
    cout << Complex::doc << endl
         << endl;

    cout << "Complex对象测试: " << endl;
    Complex c1;
    Complex c2(3, -4);
    Complex c3(c2);
    Complex c4 = c2;
    const Complex c5(3.5);

    cout << "c1 = ";
    output(c1);
    cout << endl;
    cout << "c2 = ";
    output(c2);
    cout << endl;
    cout << "c3 = ";
    output(c3);
    cout << endl;
    cout << "c4 = ";
    output(c4);
    cout << endl;
    cout << "c5.real = " << c5.get_real()
         << ", c5.imag = " << c5.get_imag() << endl
         << endl;

    cout << "复数运算测试: " << endl;
    cout << "abs(c2) = " << abs(c2) << endl;
    c1.add(c2);
    cout << "c1 += c2, c1 = ";
    output(c1);
    cout << endl;
    cout << boolalpha;
    cout << "c1 == c2 : " << is_equal(c1, c2) << endl;
    cout << "c1 != c2 : " << is_not_equal(c1, c2) << endl;
    c4 = add(c2, c3);
    cout << "c4 = c2 + c3, c4 = ";
    output(c4);
    cout << endl;
}

void test_std_complex()
{
    using std::boolalpha;
    using std::cout;
    using std::endl;

    cout << "std::complex<double>对象测试: " << endl;
    std::complex<double> c1;
    std::complex<double> c2(3, -4);
    std::complex<double> c3(c2);
    std::complex<double> c4 = c2;
    const std::complex<double> c5(3.5);

    cout << "c1 = " << c1 << endl;
    cout << "c2 = " << c2 << endl;
    cout << "c3 = " << c3 << endl;
    cout << "c4 = " << c4 << endl;

    cout << "c5.real = " << c5.real()
         << ", c5.imag = " << c5.imag() << endl
         << endl;

    cout << "复数运算测试: " << endl;
    cout << "abs(c2) = " << abs(c2) << endl;
    c1 += c2;
    cout << "c1 += c2, c1 = " << c1 << endl;
    cout << boolalpha;
    cout << "c1 == c2 : " << (c1 == c2) << endl;
    cout << "c1 != c2 : " << (c1 != c2) << endl;
    c4 = c2 + c3;
    cout << "c4 = c2 + c3, c4 = " << c4 << endl;
}

运行测试截图

屏幕截图 2025-10-22 105320

  • 问题1:比较自定义类Complex和标准库模板类complex的用法,在使用形式上,哪一种更简洁?函数和运算内在有关联吗?

  • 回答:后者更简洁,函数和运算有内在关联,二者都是对功能进行封装,后者只是将我们常用的运算封装为运算符,可以认为后者蕴含于前者。

  • 问题2-1:自定义Complex中,output/abs/add/等均设为友元,它们真的需要访问私有数据吗?(回答“是/否”并给出理由)

  • 回答:否,显然output/abs/add/可以使用接口get_real\get_imag,不需要访问私有数据。

  • 问题2-2:标准库std::complex是否把abs设为友元?(查阅cppreference后回答)

  • 回答:否。

  • 问题2-3:什么时候才考虑使用friend?总结你的思考。

  • 回答:函数需要调用类的私有方法或者修改类的私有成员变量时使用friend。

  • 问题3:如果构造对象时禁用=形式,即遇到Complex c4 = c2;编译报错,类Complex的设计应如何调整?

  • 回答:禁用拷贝构造,即Complex(const Complex &other) = default;

实验任务3

源代码PlayControl.h,PlayerControl.cpp,task3.cpp

点击查看代码 PlayerControl.h
#pragma once

#include <string>

enum class ControlType
{
    Play,
    Pause,
    Next,
    Prev,
    Stop,
    Unknown
};

class PlayerControl
{
public:
    PlayerControl();

    ControlType parse(const std::string &control_str); // 实现std::string --> ControlType转换
    void execute(ControlType cmd) const;               // 执行控制操作(以打印输出模拟)

    static int get_cnt();

private:
    static int total_cnt;
};
点击查看代码 PlayerControl.cpp
#include "PlayerControl.h"
#include <iostream>
#include <algorithm>

int PlayerControl::total_cnt = 0;

PlayerControl::PlayerControl() {}

// 待补足
// 1. 将输入字符串转为小写,实现大小写不敏感
// 2. 匹配"play"/"pause"/"next"/"prev"/"stop"并返回对应枚举
// 3. 未匹配的字符串返回ControlType::Unknown
// 4. 每次成功调用parse时递增total_cnt
ControlType PlayerControl::parse(const std::string &control_str)
{
    std::string cmd_lower;
    for (const auto &ch : control_str)
    {
        cmd_lower += std::tolower(ch);
    }
    ++total_cnt;
    if (cmd_lower == "play")
        return ControlType::Play;
    else if (cmd_lower == "pause")
        return ControlType::Pause;
    else if (cmd_lower == "next")
        return ControlType::Next;
    else if (cmd_lower == "prev")
        return ControlType::Prev;
    else if (cmd_lower == "stop")
        return ControlType::Stop;
    else
        return ControlType::Unknown;
}

void PlayerControl::execute(ControlType cmd) const
{
    switch (cmd)
    {
    case ControlType::Play:
        std::cout << "[play] Playing music...\n";
        break;
    case ControlType::Pause:
        std::cout << "[Pause] Music paused\n";
        break;
    case ControlType::Next:
        std::cout << "[Next] Skipping to next track\n";
        break;
    case ControlType::Prev:
        std::cout << "[Prev] Back to previous track\n";
        break;
    case ControlType::Stop:
        std::cout << "[Stop] Music stopped\n";
        break;
    default:
        std::cout << "[Error] unknown control\n";
        break;
    }
}

int PlayerControl::get_cnt()
{
    return total_cnt;
}
点击查看代码 task3.cpp
#include "PlayerControl.h"
#include <iostream>

void test()
{
    PlayerControl controller;
    std::string control_str;
    std::cout << "Enter Control: (play/pause/next/prev/stop/quit):\n";

    while (std::cin >> control_str)
    {
        if (control_str == "quit")
            break;

        ControlType cmd = controller.parse(control_str);
        controller.execute(cmd);
        std::cout << "Current Player control: " << PlayerControl::get_cnt() << "\n\n";
    }
}

int main()
{
    test();
}

运行测试截图

屏幕截图 2025-10-22 114359

实现emoji输出

修改PlayerControl.cpp,其余同上

点击查看代码 PlayerControl.cpp
#include "PlayerControl.h"
#include <iostream>
#include <algorithm>

int PlayerControl::total_cnt = 0;

PlayerControl::PlayerControl() {}

// 待补足
// 1. 将输入字符串转为小写,实现大小写不敏感
// 2. 匹配"play"/"pause"/"next"/"prev"/"stop"并返回对应枚举
// 3. 未匹配的字符串返回ControlType::Unknown
// 4. 每次成功调用parse时递增total_cnt
ControlType PlayerControl::parse(const std::string &control_str)
{
    std::string cmd_lower;
    for (const auto &ch : control_str)
    {
        cmd_lower += std::tolower(ch);
    }
    ++total_cnt;
    if (cmd_lower == "play")
        return ControlType::Play;
    else if (cmd_lower == "pause")
        return ControlType::Pause;
    else if (cmd_lower == "next")
        return ControlType::Next;
    else if (cmd_lower == "prev")
        return ControlType::Prev;
    else if (cmd_lower == "stop")
        return ControlType::Stop;
    else
        return ControlType::Unknown;
}

void PlayerControl::execute(ControlType cmd) const
{
    switch (cmd)
    {
    case ControlType::Play:
        std::cout << "▶️  Playing music...\n";
        break;
    case ControlType::Pause:
        std::cout << "⏸️  Music paused\n";
        break;
    case ControlType::Next:
        std::cout << "⏭️  Skipping to next track\n";
        break;
    case ControlType::Prev:
        std::cout << "⏮️  Back to previous track\n";
        break;
    case ControlType::Stop:
        std::cout << "⏹️  Music stopped\n";
        break;
    default:
        std::cout << "❓  unknown control\n";
        break;
    }
}

int PlayerControl::get_cnt()
{
    return total_cnt;
}
运行测试截图

屏幕截图 2025-10-22 114916

实验任务4

源代码Fraction.h,Fraction.cpp,task4.cpp

点击查看代码 Fraction.h
#pragma once

#include <string>

class Fraction
{
public:
    Fraction(int _up, int _down = 1);
    Fraction(const Fraction &f);
    int get_up() const;
    int get_down() const;
    Fraction negative() const;

    friend void output(const Fraction &f);
    friend Fraction add(const Fraction &f1, const Fraction &f2);
    friend Fraction sub(const Fraction &f1, const Fraction &f2);
    friend Fraction mul(const Fraction &f1, const Fraction &f2);
    friend Fraction div(const Fraction &f1, const Fraction &f2);

private:
    int up, down;

public:
    static const std::string doc;
};

void output(const Fraction &f);
Fraction add(const Fraction &f1, const Fraction &f2);
Fraction sub(const Fraction &f1, const Fraction &f2);
Fraction mul(const Fraction &f1, const Fraction &f2);
Fraction div(const Fraction &f1, const Fraction &f2);
点击查看代码 Fraction.cpp
#include <iostream>
#include <algorithm>
#include "Fraction.h"

const std::string Fraction::doc =
    "Fraction类 v 0.01版.\n"
    "目前仅支持分数对象的构造、输出、加/减/乘/除运算.";

Fraction::Fraction(int _up, int _down)
    : up(_up), down(_down)
{
    int num_gcd = std::__gcd(abs(up), abs(down));
    up /= num_gcd;
    down /= num_gcd;
}

Fraction::Fraction(const Fraction &f)
    : up(f.up), down(f.down)
{
    int num_gcd = std::__gcd(abs(up), abs(down));
    up /= num_gcd;
    down /= num_gcd;
}

int Fraction::get_up() const
{
    return up;
}

int Fraction::get_down() const
{
    return down;
}

Fraction Fraction::negative() const
{
    return Fraction(-up, down);
}

void output(const Fraction &f)
{
    bool is_negative = (f.up > 0) ^ (f.down > 0);
    int num_gcd = std::__gcd(abs(f.up), abs(f.down));
    int new_up = abs(f.up) / num_gcd;
    int new_down = abs(f.down) / num_gcd;
    if (new_down == 0)
    {
        std::cout << "分母不能为0";
        return;
    }
    if (new_up == 0)
    {
        std::cout << "0";
        return;
    }
    if (is_negative)
        std::cout << "-";
    if (new_down == 1)
    {
        std::cout << new_up;
        return;
    }
    std::cout << new_up << "/" << new_down;
}

Fraction add(const Fraction &f1, const Fraction &f2)
{
    int new_up = f1.up * f2.down + f2.up * f1.down;
    int new_down = f1.down * f2.down;
    int num_gcd = std::__gcd(abs(new_up), abs(new_down));
    return Fraction(new_up / num_gcd, new_down / num_gcd);
}

Fraction sub(const Fraction &f1, const Fraction &f2)
{
    int new_up = f1.up * f2.down - f2.up * f1.down;
    int new_down = f1.down * f2.down;
    int num_gcd = std::__gcd(abs(new_up), abs(new_down));
    return Fraction(new_up / num_gcd, new_down / num_gcd);
}

Fraction mul(const Fraction &f1, const Fraction &f2)
{
    int new_up = f1.up * f2.up;
    int new_down = f1.down * f2.down;
    int num_gcd = std::__gcd(abs(new_up), abs(new_down));
    return Fraction(new_up / num_gcd, new_down / num_gcd);
}

Fraction div(const Fraction &f1, const Fraction &f2)
{
    int new_up = f1.up * f2.down;
    int new_down = f1.down * f2.up;
    int num_gcd = std::__gcd(abs(new_up), abs(new_down));
    return Fraction(new_up / num_gcd, new_down / num_gcd);
}
点击查看代码 task4.cpp
#include "Fraction.h"
#include <iostream>

void test1();
void test2();

int main()
{
    std::cout << "测试1: Fraction类基础功能测试\n";
    test1();

    std::cout << "\n测试2: 分母为0测试: \n";
    test2();
}

void test1()
{
    using std::cout;
    using std::endl;

    cout << "Fraction类测试: " << endl;
    cout << Fraction::doc << endl
         << endl;

    Fraction f1(5);
    Fraction f2(3, -4), f3(-18, 12);
    Fraction f4(f3);
    cout << "f1 = ";
    output(f1);
    cout << endl;
    cout << "f2 = ";
    output(f2);
    cout << endl;
    cout << "f3 = ";
    output(f3);
    cout << endl;
    cout << "f4 = ";
    output(f4);
    cout << endl;

    const Fraction f5(f4.negative());
    cout << "f5 = ";
    output(f5);
    cout << endl;
    cout << "f5.get_up() = " << f5.get_up()
         << ", f5.get_down() = " << f5.get_down() << endl;

    cout << "f1 + f2 = ";
    output(add(f1, f2));
    cout << endl;
    cout << "f1 - f2 = ";
    output(sub(f1, f2));
    cout << endl;
    cout << "f1 * f2 = ";
    output(mul(f1, f2));
    cout << endl;
    cout << "f1 / f2 = ";
    output(div(f1, f2));
    cout << endl;
    cout << "f4 + f5 = ";
    output(add(f4, f5));
    cout << endl;
}

void test2()
{
    using std::cout;
    using std::endl;

    Fraction f6(42, 55), f7(0, 3);
    cout << "f6 = ";
    output(f6);
    cout << endl;
    cout << "f7 = ";
    output(f7);
    cout << endl;
    cout << "f6 / f7 = ";
    output(div(f6, f7));
    cout << endl;
}

运行测试截图

屏幕截图 2025-10-22 120509

  • 问题:分数的输出和计算,output/add/sub/mul/div,你选择的是哪一种设计方案?(友元/自由函数/命名空间+自由函数/类+static)你的决策理由?如友元方案的优缺点、静态成员函数方案的适用场景、命名空间方案的考虑因素等。

  • 回答:友元函数。考虑到分数在计算后可能出现需要化简的情况,且最简分数的存储优于非最简分数(数值可能越界),因此使用友元函数以实现计算后对分数进行简化;由于友元函数可以访问私有成员,故类的安全性有所降低,存在数据被非法修改的风险。综合以上两点,采用友元函数的方案或许更优。

实验总结

  • task1中删去友元函数func的普通声明,则编译报错;但是在如task2中删去友元函数output的普通声明,则编译不会报错。结合以上两种情况,发现后者编译不会报错的原因是output有类Complex的参数,使得编译器可以找到其声明。

  • 对于task4,在构造或计算完成后,都应判断分母是否为非0,且进行化简。

  • 诸如output/add/sub/mul/div,可以通过重载运算符实现。

posted @ 2025-10-22 12:31  dingxy123  阅读(14)  评论(0)    收藏  举报