ProcessPoolExecutor VS ThreadPoolExecutor 进程池对比线程池

ProcessPoolExecutor VS ThreadPoolExecutor 进程池对比线程池

示例一: I/O 场景——10 个网页并发下载 + 实时进度

结果

多线程: 100%|██████████| 10/10 [00:07<00:00,  1.41it/s]
【多线程】I/O 并发总耗时:7.10s
多进程: 100%|██████████| 10/10 [00:06<00:00,  1.66it/s]
【多进程】I/O 并发总耗时:6.09s

示例代码

# -*- coding: utf-8 -*-
# ProcessPoolExecutor VS ThreadPoolExecutor 进程池对比线程池
import os
from concurrent.futures import ThreadPoolExecutor
from concurrent.futures import ProcessPoolExecutor
import time

import requests
from tqdm import tqdm

# 核心 : concurrent.futures 标准库

# 示例一 I/O 场景——10 个网页并发下载 + 实时进度

urls = [f"https://httpbin.org/delay/2?i={i}" for i in range(10)]


def fetch(url):
    response = requests.get(url)
    return url, len(response.text)


def io_demo(func, desc=""):
    with func(max_workers=os.cpu_count()) as executor:
        futures = [executor.submit(fetch, u) for u in urls]
        for f in tqdm(futures, total=len(urls), desc=desc):
            url, size = f.result()
            # print(f"URL:{url} 长度:{size}")


if __name__ == '__main__':
    start_time = time.time()
    io_demo(ThreadPoolExecutor, desc='多线程')
    print(f"【多线程】I/O 并发总耗时:{time.time() - start_time:.2f}s")

    start_time = time.time()
    io_demo(ProcessPoolExecutor, desc='多进程')
    print(f"【多进程】I/O 并发总耗时:{time.time() - start_time:.2f}s")

示例二: CPU 场景——12 核并行计算 π 的猛烈逼近

结果

【多线程】π ≈ 3.141650
【多线程】CPU 并发总耗时:2.18s
【多进程】π ≈ 3.141946
【多进程】CPU 并发总耗时:0.70s

示例代码

# -*- coding: utf-8 -*-
# ProcessPoolExecutor VS ThreadPoolExecutor 进程池对比线程池
import os
import random
from concurrent.futures import ThreadPoolExecutor
from concurrent.futures import ProcessPoolExecutor
import time

import requests
from tqdm import tqdm


# 核心 : concurrent.futures 标准库

# 示例二:CPU 场景。 12 核并行计算 π 的猛烈逼近


# 蒙特卡洛法近似计算 π
def pi_partial(samples):
    inside = 0
    rnd = random.Random()
    for _ in range(samples):
        x = rnd.random()
        y = rnd.random()
        if x * x + y * y < 1:
            inside += 1
    return inside


def cpu_demo(func, desc=""):
    workers = os.cpu_count()  # 使用CPU核心数
    samples_per_worker = 5_000_000  # 每个核心计算5百万样本
    with func(max_workers=workers) as executor:
        futures = [executor.submit(pi_partial, samples_per_worker) for _ in range(workers)]
        inside_total = sum(f.result() for f in futures)
        
    # 等价于:4 * (总命中数) / (总样本数)
    pi_estimate = 4 * inside_total / (samples_per_worker * workers)
    return pi_estimate


if __name__ == '__main__':
    start_time = time.time()
    thread_res = cpu_demo(ThreadPoolExecutor, desc='多线程')
    print(f"【多线程】π ≈ {thread_res:.6f}")
    print(f"【多线程】CPU 并发总耗时:{time.time() - start_time:.2f}s")

    start_time = time.time()
    process_res = cpu_demo(ProcessPoolExecutor, desc='多进程')
    print(f"【多进程】π ≈ {process_res:.6f}")
    print(f"【多进程】CPU 并发总耗时:{time.time() - start_time:.2f}s")

concurrent.futures 核心 API

方法 用途 细节要点
submit(fn, *args, **kwargs) 提交单任务,返回 Future 立即返回,不阻塞
map(fn, iterable, timeout=None, chunksize=1) 批量任务,结果按输入顺序返回 阻塞直到全部完成
as_completed(fs, timeout=None) 谁先完成先拿结果 适合进度条、实时反馈
wait(fs, return_when=...) 阻塞到全部/任一/首个任务完成 与 threading.Event 类似
Future.result() 获取任务结果 / 抛异常 可加 timeout
Future.cancel() 取消未开始的任务 已运行不会终止
上下文管理器 with Executor(...) as ex: 自动 shutdown(wait=True)

|记住:全部都围绕 Future 这一轻量对象。Future 包含 状态、结果、异常、取消接口,让主线程放心拿回信息。

参考

https://zhuanlan.zhihu.com/p/1923728223172265104

posted @ 2025-09-22 16:20  染指未来  阅读(11)  评论(0)    收藏  举报