转发---[沧海拾遗]java并发之CountDownLatch、Semaphore和CyclicBarrier

JAVA并发包中有三个类用于同步一批线程的行为,分别是CountDownLatch、Semaphore和CyclicBarrier。

CountDownLatch

CountDownLatch是一个计数器闭锁,主要的功能就是通过await()方法来阻塞住当前线程,然后等待计数器减少到0了,再唤起这些线程继续执行。 这个类里主要有两个方法,一个是向下减计数器的方法:countdown(),其实现的核心代码如下:

public boolean tryReleaseShared(int releases) {  
	// Decrement count; signal when transition to zero  
	for (;;) {   
	int c = getState();     
	if (c == 0)    
		return false;     
	int nextc = c-1;    
	if (compareAndSetState(c, nextc))    
		return nextc == 0;    
	}    
}    

很简单,如果取得当前的状态为0,说明这个锁已经结束,直接返回false;如果没有结束,然后去设置计数器减1,如果compareAndSetState不成功,则继续循环执行。 而其中的一直等待计数器归零的方法是await()。 
通过CountDownLatch可以做几件事情:

1. 主线程控制同时启动一组线程

final CountDownLatch count = new CountDownLatch(1);
for (int i = 0; i < 3; i++) {
    new Thread("Thread" + i) {
        public void run() {
            System.out.println(Thread.currentThread().getName() + " wait");
            try {
                count.await();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println(Thread.currentThread().getName() + " start");
        }
    }.start();
}
//等等三秒,否则有可能3个线程并没有全部进行await状态
try {
    Thread.sleep(3000);
} catch (InterruptedException e) {
    e.printStackTrace();
}
count.countDown();

2. 主线程等待各子线程全部执行完毕后再往下执行:

final CountDownLatch count = new CountDownLatch(3);
for (int i = 0; i < 3; i++) {
    new Thread("Thread" + i) {
        public void run() {
            System.out.println(Thread.currentThread().getName() + " start");
            count.countDown();
        }
    }.start();
}
try {
    count.await();
} catch (InterruptedException e) {
    e.printStackTrace();
}
System.out.println("All end!!!");    

Semaphore

Semaphore与CountDownLatch相似,不同的地方在于Semaphore的值被获取到后是可以释放的,并不像 CountDownLatch那样一直减到底。它也被更多地用来限制流量,类似阀门的 功能。如果限定某些资源最多有N个线程可以访问,那么超过N个主不允许再有线程来访问,同时当现有线程结束后,就会释放,然后允许新的线程进来。有点类似 于锁的lock与 unlock过程。相对来说他也有两个主要的方法:

  1. 用于获取权限的acquire(),其底层实现与CountDownLatch.countdown()类似;
  2. 用于释放权限的release(),其底层实现与acquire()是一个互逆的过程。

用Semaphore来实现限流代码详见:semaphore例子

CyclicBarrier

CyclicBarrier是用来一个关卡来阻挡住所有线程,等所有线程全部执行到关卡处时,再统一执行下一步操作,它里面最重要的方法是await()方法,其实现如下:

private int dowait(boolean timed, long nanos)
    throws InterruptedException, BrokenBarrierException,
           TimeoutException {
    //取锁,以防止在后面做减1计数时线程不安全
    final ReentrantLock lock = this.lock;
    lock.lock();
    try {
        final Generation g = generation;

        if (g.broken)
            throw new BrokenBarrierException();

        if (Thread.interrupted()) {
            breakBarrier();
            throw new InterruptedException();
        }
       //如果当前线程执行到了,则将计数器减1,计数器为0则说明所有线程均执行到这里,可以调用下一步操作
       int index = --count;
       if (index == 0) {  // tripped
           boolean ranAction = false;
           try {
               //获取到定义好的下一步操作,并执行
	   final Runnable command = barrierCommand;
               if (command != null)
                   command.run();
               ranAction = true;
               nextGeneration();
               return 0;
           } finally {
               if (!ranAction)
                   breakBarrier();
           }
       }

        // loop until tripped, broken, interrupted, or timed out
        for (;;) {
            try {
                if (!timed)
                    trip.await();
                else if (nanos > 0L)
                    nanos = trip.awaitNanos(nanos);
            } catch (InterruptedException ie) {
                if (g == generation && ! g.broken) {
                    breakBarrier();
		throw ie;
	    } else {
		// We're about to finish waiting even if we had not
		// been interrupted, so this interrupt is deemed to
		// "belong" to subsequent execution.
		Thread.currentThread().interrupt();
	    }
            }

            if (g.broken)
                throw new BrokenBarrierException();

            if (g != generation)
                return index;

            if (timed && nanos <= 0L) {
                breakBarrier();
                throw new TimeoutException();
            }
        }
    } finally {
        lock.unlock();
    }
}    

即每个线程执行完后调用await(),然后在await()里,线程先将计数器减1,如果计数器为0,则执行定义好的操作,然后再继续执行原线程的内容。 
这个类比之前两个类的一个好处是有点类似于切面编程,可以让我们在同类线程的某个切面切入一块逻辑,并且可以同步所有的线程的执行速度。
例子代码如下:

final CyclicBarrier barrier = new CyclicBarrier(4, new Runnable() {

    @Override
    public void run() {
        System.out.println("All Threads Here");

    }
});
for (int i = 0; i < 4; i++) {
    new Thread("Thread" + i) {
        public void run() {
            System.out.println(Thread.currentThread().getName() + " wait");
            try {
                barrier.await();
            } catch (InterruptedException e) {
                e.printStackTrace();
            } catch (BrokenBarrierException e) {
                e.printStackTrace();
            }
            System.out.println(Thread.currentThread().getName() + " crossed");
        }
    }.start();
}  

最终的输出结果为:

Thread0 wait
Thread1 wait 
Thread2 wait 
Thread3 wait 
All Threads Here 
Thread0 crossed 
Thread1 crossed 
Thread2 crossed 
Thread3 crossed

posted on 2014-11-05 16:09  Joyfulmath  阅读(201)  评论(0编辑  收藏  举报

导航