摘要: 特征选择是一个识别数据集中最具相关性变量的过程,其主要目标是提升模型性能并降低系统复杂度。传统特征选择方法存在一定局限性。变量之间往往存在相互依存关系,移除某一变量可能会削弱其他变量的预测能力。 这种方法容易忽视某些变量只有在与其他变量组合时才能提供有效信息的情况。这种局限性可能导致模型性能次优。为 阅读全文
posted @ 2025-01-07 11:47 deephub 阅读(16) 评论(0) 推荐(0) 编辑