#include <iostream>
#include <vector>
#include <algorithm>
#include <string>
#include <set>
#include <queue>
#include <map>
#include <sstream>
#include <cstdio>
#include <cstring>
#include <numeric>
#include <cmath>
#include <iomanip>
#include <deque>
#include <bitset>
//#include <unordered_set>
//#include <unordered_map>
//#include <bits/stdc++.h>
//#include <xfunctional>
#define ll long long
#define PII pair<int, int>
using namespace std;
int dir[5][2] = { { 0,1 } ,{ 0,-1 },{ 1,0 },{ -1,0 } ,{ 0,0 } };
const long long INF = 0x7f7f7f7f7f7f7f7f;
const int inf = 0x3f3f3f3f;
const double pi = 3.14159265358979;
const int mod = 1e9 + 7;
const int N = 2e5+5;
//if(x<0 || x>=r || y<0 || y>=c)
//1000000000000000000
inline ll read()
{
ll x = 0; bool f = true; char c = getchar();
while (c < '0' || c > '9') { if (c == '-') f = false; c = getchar(); }
while (c >= '0' && c <= '9') x = (x << 1) + (x << 3) + (c ^ 48), c = getchar();
return f ? x : -x;
}
int A[100000] = { 0,1,2,3,4,5,6 };
int tree[N];
void build(int node, int start, int end)
{
if (start == end)
{
// Leaf node will have a single element
tree[node] = A[start];
}
else
{
int mid = (start + end) / 2;
// Recurse on the left child
build(2 * node, start, mid);
// Recurse on the right child
build(2 * node + 1, mid + 1, end);
// Internal node will have the sum of both of its children
tree[node] = tree[2 * node] + tree[2 * node + 1];
}
}
void update(int node, int start, int end, int idx, int val)
{
if (start == end)
{
// Leaf node
A[idx] += val;
tree[node] += val;
}
else
{
int mid = (start + end) / 2;
if (start <= idx && idx <= mid)
{
// If idx is in the left child, recurse on the left child
update(2 * node, start, mid, idx, val);
}
else
{
// if idx is in the right child, recurse on the right child
update(2 * node + 1, mid + 1, end, idx, val);
}
// Internal node will have the sum of both of its children
tree[node] = tree[2 * node] + tree[2 * node + 1];
}
}
int query(int node, int start, int end, int l, int r)
{
if (r < start || end < l)
{
// range represented by a node is completely outside the given range
return 0;
}
if (l <= start && end <= r)
{
// range represented by a node is completely inside the given range
return tree[node];
}
// range represented by a node is partially inside and partially outside the given range
int mid = (start + end) / 2;
int p1 = query(2 * node, start, mid, l, r);
int p2 = query(2 * node + 1, mid + 1, end, l, r);
return (p1 + p2);
}
int main()
{
int size = 6;
build(1, 1, size);
int res=query(1, 1, size, 2, 3);
cout << res<<endl;
return 0;
}