[HDU3976]Electric resistance(电阻)(信竞&物竞)(高斯消元)
题面
Problem Description
Now give you a circuit who has n nodes (marked from 1 to n) , please tell abcdxyzk the equivalent resistance of the circuit between node 1 and node n. You may assume that the circuit is connected. The equivalent resistance of the circuit between 1 and n is that, if you only consider node 1 as positive pole and node n as cathode , all the circuit could be regard as one resistance . (It's important to analyse complicated circuit ) At most one resistance will between any two nodes.
给你一个无向连通图(电路图)
每一条边的边权为这条边的电阻,点1是正极,点n是负极。
求整个电路的等效电阻。
Input
In the first line has one integer T indicates the number of test cases. (T <= 100)
T组数据
Each test first line contain two number n m(1<n<=50,0<m<=2000), n is the number of nodes, m is the number of resistances.Then follow m lines ,each line contains three integers a b c, which means there is one resistance between node a and node b whose resistance is c. (1 <= a,b<= n, 1<=c<=10^4) You may assume that any two nodes are connected!
n m
u1 v1 w1(R)
......
um vm wm(R)
Output
for each test output one line, print "Case #idx: " first where idx is the case number start from 1, the the equivalent resistance of the circuit between 1 and n. Please output the answer for 2 digital after the decimal point .
Case #idx: answer_x(double)
......
题解
不妨先随便假设电源电压为一个值U,已知量为边的电阻,我们要设未知量来高斯消元解方程。
设每个点的电流有点麻烦,我们设电压。
由于电压指导体两端的电压,不能说某个点的电压,于是我们设U[i]为 以i和n为两端的电路的电压。
显然,U[1] = U,U[n] = 0,U[i]是个未知数。
若电流从u流到v,那么U[u]一定大于U[v]。
由于流入一个点 i 的电流等于流出一个点的电流,
即
由于
那么合并一下,。
这就是方程组中的一个方程,用高斯消元可以把U[...]都求出来,可以证明一定有解。
最后通过点1连接的电阻算出干路电流,再通过欧姆定律算出等效电阻。
这里有一份很不错的高斯消元板子。
CODE
#include<cstdio>
#include<iostream>
#include<cstring>
#include<vector>
#include<queue>
#include<stack>
#include<cmath>
#include<algorithm>
#define LL long long
#define MAXN 105
#define DB double
#define lowbit(x) ((-x & x))
#define rg register
#define eps (1e-8)
using namespace std;
inline LL read() {
LL f = 1,x = 0;char s = getchar();
while(s < '0' || s > '9') {if(s == '-') f = -1;s = getchar();}
while(s >= '0' && s <= '9') {x = x * 10 + s - '0';s = getchar();}
return x * f;
}
LL n;
LL m,i,j,s,o,k;
bool cmp(DB a,DB b) {
if(a-b>eps) return 1;
if(a-b<-eps) return -1;
return 0;
}
bool gauss(int n,DB a[][MAXN]) {
bool flag=1;
for(int i = 1;i <= n;i ++) {
int maxi = i;
for(int j = i+1;j <= n;j ++) {
if(cmp(a[maxi][i],a[j][i]) == -1) {
maxi = j;
}
}
swap(a[maxi],a[i]);
if(cmp(a[i][i],0.0) == 0) {
flag = 0;continue;
}
for(int j = 1;j <= n;j ++) {
if(i==j || cmp(a[j][i],0) == 0) continue;
for(int k = i+1;k <= n+1;k ++) {
a[j][k] -= a[i][k] * a[j][i]/a[i][i];
}
a[j][i] = 0;
}
}
return flag;
}
int gauss_final(int n,DB a[][MAXN],DB *b) {
if(!gauss(n,a)) {
for(int i = 1;i <= n;i ++) {
bool flag = 0;
for(int j = 1;j <= n;j ++) {
if(cmp(a[i][j],0) != 0) {
flag = 1;
}
}
if(!flag && cmp(a[i][n+1],0) != 0) return -1;
}
return 0;
}
for(int i = 1;i <= n;i ++) {
b[i] = a[i][n+1]/a[i][i];
}
return 1;
}
DB a[MAXN][MAXN];
DB U[MAXN];
DB g[MAXN];
queue<int> q;
int main() {
int T = read(),idx=0;
while(T --) {
n = read();m = read();
memset(a,0,sizeof(a));
memset(U,0,sizeof(U));
memset(g,0,sizeof(g));
U[1] = 100.0;U[n] = 0;
while(!q.empty()) q.pop();
for(int i = 1;i <= m;i ++) {
s = read();o = read();k = read();
if(s>o) swap(s,o);
int t = o;
if(s == 1) q.push(o),g[o] = k*1.0;
if(s!=1&&s!=n) {
a[s-1][s-1] += 1.0/(DB)k;
if(t!=1&&t!=n) {
a[s-1][t-1] -= 1.0/(DB)k;
}
else if(t==1) {
a[s-1][n-1] += 100.0/(DB)k;
}
}
if(t!=1&&t!=n) {
a[t-1][t-1] += 1.0/(DB)k;
if(s!=1&&s!=n) {
a[t-1][s-1] -= 1.0/(DB)k;
}
else if(s==1) {
a[t-1][n-1] += 100.0/(DB)k;
}
}
}
gauss_final(n-2,a,U+1);
DB I = 0.0;
while(!q.empty()) {
int v = q.front();
q.pop();
I += (U[1] - U[v]) / g[v];
}
printf("Case #%d: %.2lf\n",++idx,U[1]/I);
}
return 0;
}

浙公网安备 33010602011771号