# -*- coding: utf-8 -*-
import torch
from torch.utils.data import Dataset
from torchvision import datasets
from torchvision.transforms import ToTensor
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader
from torch import nn
import os
# 下载 FashionMNIST 训练集和测试集
training_data = datasets.FashionMNIST(
root="data",
train=True,
download=True,
transform=ToTensor()
)
test_data = datasets.FashionMNIST(
root="data",
train=False,
download=True,
transform=ToTensor()
)
# labels_map = {
# 0: "T-Shirt",
# 1: "Trouser",
# 2: "Pullover",
# 3: "Dress",
# 4: "Coat",
# 5: "Sandal",
# 6: "Shirt",
# 7: "Sneaker",
# 8: "Bag",
# 9: "Ankle Boot",
# }
# figure = plt.figure(figsize=(8, 8))
# cols, rows = 3, 3
# for i in range(1, cols * rows + 1):
# sample_idx = torch.randint(len(training_data), size=(1,)).item()
# img, label = training_data[sample_idx] # 解包
# figure.add_subplot(rows, cols, i)
# plt.title(labels_map[label])
# plt.axis("off")
# plt.imshow(img.squeeze(), cmap="gray")
# plt.show()
# 用 DataLoader 封装
train_dataloader = DataLoader(training_data, batch_size=64, shuffle=True)
# batch_size=64:每次迭代从训练集中取出 64 个样本。
# shuffle=True:每轮训练(epoch)前会打乱数据顺序,提高训练效果,防止模型记住顺序。
test_dataloader = DataLoader(test_data, batch_size=64, shuffle=True)
# Display image and label.
# 从训练数据集中获取一个批次的图像和标签,用于调试或训练前的验证。展示第一个图片样本
# train_features, train_labels = next(iter(train_dataloader))
# print(f"Feature batch shape: {train_features.size()}")
# print(f"Labels batch shape: {train_labels.size()}")
# img = train_features[0].squeeze()
# label = train_labels[0]
# plt.imshow(img, cmap="gray")
# plt.show()
# print(f"Label: {label}")
# 定义神经网络模型
class NeuralNetwork(nn.Module):
def __init__(self):
super().__init__()
self.flatten = nn.Flatten() # 将 1x28x28 展平为 784
self.linear_relu_stack = nn.Sequential(
nn.Linear(28*28, 128),
nn.ReLU(),
nn.Linear(128, 64),
nn.ReLU(),
nn.Linear(64, 10) # 最终10类输出
)
def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits
# 设置训练设备、实例化模型和损失函数
device = "cuda" if torch.cuda.is_available() else "cpu"
model = NeuralNetwork().to(device) # 创建该网络的一个实例对象并存储到设备
loss_fn = nn.CrossEntropyLoss() #设置损失函数
optimizer = torch.optim.SGD(model.parameters(), lr=1e-2)
# 定义训练函数
# 函数逻辑:
# 取一批数据 X, y
# 前向传播 → 得到预测 pred
# 计算损失 loss
# 清空梯度 optimizer.zero_grad()
# 反向传播 loss.backward()
# 参数更新 optimizer.step()
# 继续下一批,直到训练完所有样本
def train_loop(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
model.train()
for batch, (X, y) in enumerate(dataloader):
X, y = X.to(device), y.to(device) # X 是一批图像(shape 类似于 [64, 1, 28, 28]) y 是对应的标签(长度为 64)
# 前向传播
pred = model(X)
loss = loss_fn(pred, y)
# 反向传播
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch % 100 == 0:
loss_val = loss.item()
current = batch * len(X)
print(f"loss: {loss_val:>7f} [{current:>5d}/{size:>5d}]")
# 定义测试函数
def test_loop(dataloader, model, loss_fn):
size = len(dataloader.dataset)
num_batches = len(dataloader)
model.eval()
test_loss, correct = 0, 0
with torch.no_grad():
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
test_loss += loss_fn(pred, y).item()
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
test_loss /= num_batches
correct /= size
print(f"Test Result: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
# 循环训练若干轮
epochs = 5
for t in range(epochs):
print(f"Epoch {t+1}\n-------------------------------")
train_loop(train_dataloader, model, loss_fn, optimizer)
test_loop(test_dataloader, model, loss_fn)
print("Done!")
os.makedirs("saved_models", exist_ok=True)
torch.save(model.state_dict(), "saved_models/fashion_mnist_model.pth") # 保存训练好的模型参数
print("saved model!")