多项式朴素贝叶斯(数据思维赛-安全文本信息抽取)
训练集有四列数据:

id为序号,sentence_idx为语句的序号,words为从一条语句中解析出的单词,tag为每个word对应的tag标签。
test集给出前三列数据,求每一个word对应的tag数据。
使用多项式朴素贝叶斯算法解决:
1 import pandas as pd 2 from sklearn.naive_bayes import MultinomialNB 3 from sklearn.feature_extraction.text import CountVectorizer 4 from sklearn.metrics import classification_report 5 6 # 读取数据 7 train_data = pd.read_csv('train.csv',converters={i: str for i in range(0, 100)}) 8 test_data = pd.read_csv('test.csv',converters={i: str for i in range(0, 100)}) 9 10 # 特征工程 11 vectorizer = CountVectorizer(lowercase=False, token_pattern=r'\b\w+\b') 12 X_train = vectorizer.fit_transform(train_data['words']) 13 X_test = vectorizer.transform(test_data['words']) 14 y_train = train_data['tag'] 15 classes = train_data['tag'].unique().tolist() 16 17 # 训练模型 18 model = MultinomialNB() 19 model.fit(X_train, y_train) 20 21 # 预测标签 22 y_pred = model.predict(X_test) 23 tags_data = pd.DataFrame({'id': test_data['id'], 'sentence_idx': test_data['sentence_idx'], 'tag': y_pred}) 24 tags_data.to_csv('result.csv', index=False)

浙公网安备 33010602011771号