poj 1186 分类: poj 2015-08-08 22:28 4人阅读 评论(0) 收藏
似乎是NOI 2001的题目,感觉很有意思。。。
Meet in the Middle (中途相遇法)
看起来
分别计算 :
那么
时间复杂度:
另外注意使用 std::unique 函数之后的数组中每个值出现的次数与原数组不相同。。。
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <ctime>
#include <vector>
#include <utility>
#include <stack>
#include <queue>
#include <iostream>
#include <algorithm>
template<class Num>void read(Num &x)
{
char c; int flag = 1;
while((c = getchar()) < '0' || c > '9')
if(c == '-') flag *= -1;
x = c - '0';
while((c = getchar()) >= '0' && c <= '9')
x = (x<<3) + (x<<1) + (c-'0');
x *= flag;
return;
}
template<class Num>void write(Num x)
{
if(x < 0) putchar('-'), x = -x;
static char s[20];int sl = 0;
while(x) s[sl++] = x%10 + '0',x /= 10;
if(!sl) {putchar('0');return;}
while(sl) putchar(s[--sl]);
}
const int maxn = 10, maxm = 155, size = maxm*maxm*maxm;
int n, m, k[maxn], p[maxn];
int val[size], len, vlen, cnt[size];
long long ans = 0;
void count(int rem,int v)
{
if(rem == 0)
{
val[++len] = v;
return;
}
for(int i = 1; i <= m; i++)
{
int cal = k[rem];
for(int j = 1; j <= p[rem]; j++) cal *= i;
count(rem - 1, v + cal);
}
}
#define find_in_val(x) std::lower_bound(val + 1, val + vlen + 1, x) - val
void prework()
{
static int tmp[size];
for(int i = 1; i <= len; i++) tmp[i] = val[i];
std::sort(val + 1, val + len + 1);
vlen = std::unique(val + 1, val + len + 1) - (val + 1);
for(int i = 1; i <= len; i++) cnt[find_in_val(tmp[i])] ++;
}
void dfs(int pos,int v)
{
if(pos > n)
{
int t = find_in_val(-v);
if(val[t] == -v) ans += cnt[t];
return;
}
for(int i = 1; i <= m; i++)
{
int cal = k[pos];
for(int j = 1; j <= p[pos]; j++) cal *= i;
dfs(pos + 1, v + cal);
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("1186.in","r",stdin);
freopen("1186.out","w",stdout);
#endif
read(n), read(m);
for(int i = 1; i <= n; i++)
read(k[i]), read(p[i]);
count(n>>1, 0);
prework();
dfs((n>>1) + 1, 0);
write(ans);
#ifndef ONLINE_JUDGE
fclose(stdin);
fclose(stdout);
#endif
return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。